GSTDTAP  > 气候变化
DOI10.1088/1748-9326/aac547
Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts
Zaherpour, Jamal1; Gosling, Simon N.1; Mount, Nick1; Schmied, Hannes Mueller2,3; Veldkamp, Ted I. E.4,18; Dankers, Rutger5; Eisner, Stephanie6; Gerten, Dieter7,8; Gudmundsson, Lukas9; Haddeland, Ingjerd10; Hanasaki, Naota11; Kim, Hyungjun12; Leng, Guoyong13; Liu, Junguo14; Masaki, Yoshimitsu15; Oki, Taikan12,16; Pokhrel, Yadu17; Satoh, Yusuke18; Schewe, Jacob7; Wada, Yoshihide18
2018-06-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
出版年2018
卷号13期号:6
文章类型Article
语种英语
国家England; Germany; Netherlands; Switzerland; Norway; Japan; Peoples R China; USA; Austria
英文摘要

Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models' ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model-a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.


英文关键词global hydrological models land surface models human impacts extreme events model evaluation model validation
领域气候变化
收录类别SCI-E
WOS记录号WOS:000435137000001
WOS关键词LAND-SURFACE MODELS ; CLIMATE-CHANGE ; MULTIMODEL ENSEMBLE ; WATER SCARCITY ; PART 1 ; PREDICTIVE CAPABILITIES ; STREAMFLOW INDEXES ; ARCHIVE GSIM ; GROUNDWATER ; RESOURCES
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/31003
专题气候变化
作者单位1.Univ Nottingham, Sch Geog, Nottingham NG7 2RD, England;
2.Goethe Univ, Inst Phys Geog, Frankfurt, Germany;
3.Senckenberg Biodivers & Climate Res Ctr SBiK F, Frankfurt, Germany;
4.Vrije Univ Amsterdam, Boelelaan 1087, NL-1081 HV Amsterdam, Netherlands;
5.Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England;
6.Univ Kassel, Ctr Environm Syst Res, Kassel, Germany;
7.Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany;
8.Humboldt Univ, Geog Dept, D-10099 Berlin, Germany;
9.Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland;
10.Statens Vegvesen Reg Vest, Norwegian Publ Rd Adm, Postboks 43, N-6861 Leikanger, Norway;
11.Natl Inst Environm Studies, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan;
12.Univ Tokyo, Inst Ind Sci, 4-6-1 Meguro Ku, Tokyo 1538505, Japan;
13.Univ Oxford, Environm Change Inst, Oxford OX1 3QY, England;
14.Southern Univ Sci & Technol China, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China;
15.Hirosaki Univ, Bunkyocho 3, Hirosaki, Aomori 0368561, Japan;
16.United Nations Univ, Shibuya Ku, 5-53-70 Jingumae, Tokyo 1508925, Japan;
17.Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA;
18.IIASA, Schlosspl 1, A-2361 Laxenburg, Austria
推荐引用方式
GB/T 7714
Zaherpour, Jamal,Gosling, Simon N.,Mount, Nick,et al. Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts[J]. ENVIRONMENTAL RESEARCH LETTERS,2018,13(6).
APA Zaherpour, Jamal.,Gosling, Simon N..,Mount, Nick.,Schmied, Hannes Mueller.,Veldkamp, Ted I. E..,...&Wada, Yoshihide.(2018).Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts.ENVIRONMENTAL RESEARCH LETTERS,13(6).
MLA Zaherpour, Jamal,et al."Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts".ENVIRONMENTAL RESEARCH LETTERS 13.6(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zaherpour, Jamal]的文章
[Gosling, Simon N.]的文章
[Mount, Nick]的文章
百度学术
百度学术中相似的文章
[Zaherpour, Jamal]的文章
[Gosling, Simon N.]的文章
[Mount, Nick]的文章
必应学术
必应学术中相似的文章
[Zaherpour, Jamal]的文章
[Gosling, Simon N.]的文章
[Mount, Nick]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。