GSTDTAP  > 气候变化
Predicting Poverty Using Geospatial Data in Thailand
Nattapong Puttanapong; Arturo Martinez; Mildred Addawe
2020-12-29
出版年2020
国家国际
领域气候变化 ; 资源环境
英文摘要

Predicting Poverty Using Geospatial Data in Thailand

Publication | December 2020

This study examines an alternative approach in estimating poverty by investigating whether readily available geospatial data can accurately predict the spatial distribution of poverty in Thailand.

Results suggest that intensity of night lights and other variables that approximate population density are highly associated with the proportion of population living in poverty. The random forest technique yielded the highest level of prediction accuracy among the methods considered, perhaps due to its capability to fit complex association structures even with small and medium-sized datasets.

Contents 

  • Introduction
  • Literature Review
  • Data
  • Methods
  • Analytical Results
  • Conclusion

Additional Details

Authors
Type
Series
Subjects
  • Economics
  • Poverty
  • Post-2015 Development Agenda
  • Statistics
Countries
  • Thailand
Pages
  • 36
Dimensions
  • 8.5 x 11
SKU
  • WPS200434-2
ISSN
  • 2313-5867 (print)
  • 2313-5875 (electronic)

Subscribe to our monthly digest of latest ADB publications.

Follow ADB Publications on social media.

URL查看原文
来源平台Asian Development Bank
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/310500
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Nattapong Puttanapong,Arturo Martinez,Mildred Addawe. Predicting Poverty Using Geospatial Data in Thailand,2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nattapong Puttanapong]的文章
[Arturo Martinez]的文章
[Mildred Addawe]的文章
百度学术
百度学术中相似的文章
[Nattapong Puttanapong]的文章
[Arturo Martinez]的文章
[Mildred Addawe]的文章
必应学术
必应学术中相似的文章
[Nattapong Puttanapong]的文章
[Arturo Martinez]的文章
[Mildred Addawe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。