GSTDTAP  > 资源环境科学
DOI10.1029/2020WR027400
Deep‐Learning‐Based Adjoint State Method: Methodology and Preliminary Application to Inverse Modelling
Cong Xiao; Ya Deng; Guangdong Wang
2021-01-15
发表期刊Water Resources Research
出版年2021
英文摘要

We present an efficient adjoint model based on the deep‐learning surrogate to address high‐dimensional inverse modelling with an application to subsurface transport. The proposed method provides a completely code non‐intrusive and computationally feasible way to approximate the model derivatives, which subsequently can be used to derive gradients for inverse modelling. This conceptual deep‐learning framework, i.e., an architecture of deep convolutional neural network through combining autoencoder and autoregressive structure, efficiently produces an analogously analytical adjoint with the help of auto‐differentiation (AD) module in the popular deep‐learning packages. We intentionally retain training data at the specific time instances where the measurements are taken, the storage of the intermediate states and computation of their adjoint, therefore, are completely avoided. This proposed adjoint state method is tested on a synthetic 2D model for parameter estimations. The preliminary results reveal the feasibility of the proposed adjoint state method in term of computational efficiency and programming flexibility.

This article is protected by copyright. All rights reserved.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/311342
专题资源环境科学
推荐引用方式
GB/T 7714
Cong Xiao,Ya Deng,Guangdong Wang. Deep‐Learning‐Based Adjoint State Method: Methodology and Preliminary Application to Inverse Modelling[J]. Water Resources Research,2021.
APA Cong Xiao,Ya Deng,&Guangdong Wang.(2021).Deep‐Learning‐Based Adjoint State Method: Methodology and Preliminary Application to Inverse Modelling.Water Resources Research.
MLA Cong Xiao,et al."Deep‐Learning‐Based Adjoint State Method: Methodology and Preliminary Application to Inverse Modelling".Water Resources Research (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cong Xiao]的文章
[Ya Deng]的文章
[Guangdong Wang]的文章
百度学术
百度学术中相似的文章
[Cong Xiao]的文章
[Ya Deng]的文章
[Guangdong Wang]的文章
必应学术
必应学术中相似的文章
[Cong Xiao]的文章
[Ya Deng]的文章
[Guangdong Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。