GSTDTAP  > 气候变化
Researchers improve data readout by using 'quantum entanglement'
admin
2021-01-20
发布年2021
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)

Researchers say they have been able to greatly improve the readout of data from digital memories - thanks to a phenomenon known as 'quantum entanglement'.

The research team, which included researchers from the Italian Institute of Metrological Research (INRIM) and the University of York, say the findings could have major applications for digital storage devices, including optical memories such as CD or BluRay disks.

This is the first experimental demonstration that quantum sources of light can enhance the readout of information from digital memories, an advance that could potentially lead to faster access of data in large databases and to construct memories with higher capacities in our next-generation computers.

In an optical memory, bits are read by shining a laser beam over the reflecting surface of the disk. In the memory, each microscopic cell has one of two possible levels of reflectivity, representing the values "zero" and "one" of a bit.

As a result, the laser beam reflected from a cell may be more or less intense depending on the value of the bit. The intensity of the beam is then registered by a detector and finally translated into an electrical signal.

However, when the intensity of the laser beam becomes too low, for example as a result of an increased speed of the disk, energy fluctuations prevent the correct retrieval of the bits, introducing too many errors.

The study showed how to fix this problem by resorting to more sophisticated light sources, where the use of quantum entanglement completely removes the unwanted fluctuations.

The researchers say the consequences of the study go far beyond applications to digital memories. In fact, the same principle can be used in spectroscopy and the measurement of biological samples, chemical compounds and other materials.

The scheme also paves the way for non-invasive, ultra-sensitive measurements by greatly reducing the optical power without reducing the amount of information recovered from the systems.

Another promising perspective explored by the researchers is to extend the method to the recognition of complex patterns in conjunction with modern machine-learning algorithms, with potential implications for bio-imaging.

Professor Stefano Pirandola, from the Department of Computer Science at the University of York, said: "This experiment finally shows how we can harness quantum entanglement to better read information from memory devices and other physical systems."

###

The findings are reported in the journal Science Advances.

The research received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862644

(Project "Quantum Readout Techniques and Technologies" coordinated by the University of York).

The paper in publication is: https://arxiv.org/abs/2004.10211

This is the journal https://advances.sciencemag.org/

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/311852
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Researchers improve data readout by using 'quantum entanglement'. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。