GSTDTAP  > 气候变化
'Handy pen' lights up when exposed to nerve gas or spoiled food vapors
admin
2021-02-10
发布年2021
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: The handy pen's tip changes color when exposed to harmful gases. view more 

Credit: Adapted from ACS Materials Letters 2021, DOI: 10.1021/acsmaterialslett.0c00516

Exposure to some odorless, colorless and tasteless gases, such as nerve agents, can be toxic or even lethal. And having the ability to detect other types of vapors could save people from eating spoiled or rotten food. Easy-to-use portable devices could, therefore, go a long way toward protecting the public. Now researchers reporting in ACS Materials Letters have created a pen-like sensor that changes color when exposed to harmful gases.

Humans can't detect many toxic vapors, such as poisonous nerve agents or volatile amines released from spoiled foods, so a sensor that can notice these gases' very minute concentrations would be useful. Fluorescence-based sensors are a potential solution because they are inexpensive and can reveal trace amounts of compounds. However, some fluorescing compounds clump together once they react with gases, reducing their intensity, and they can require complex fabrication processes. Yet other fluorophores produce more intense light when they are clumped together -- aggregation-induced emission fluorogens (AIEgens). Most of the current detection methods using AIEgens are liquid-based, requiring gases to be dissolved in solution before analysis, and are not easily portable. So, Zhe Jiao, Pengfei Zhang, Haitao Feng, Ben Zhong Tang and colleagues wanted to adapt AIEgens to be integrated into a needle-thin fiber, creating a handheld device whose tip "turns on" in the presence of a particular gas.

The researchers developed two AIEgen-based "handy pens," one for identifying the nerve agent diethyl chlorophosphite (DCP) and the other for amines produced by rotting food. First, they coated silicon dioxide polymer fibers with a thin sol-gel layer to immobilize AIEgens. Next, they added an AIEgen that changes color when it reacts with DCP on one set of fibers, and an AIEgen that reacts with amines on another set. The coated fibers were then placed at the end of a pen-like device with a UV light source inside. The DCP sensor's tip changed from a yellow fluorescence to blue within 30 minutes of exposure to DCP. The amine sensor's tip was initially a mild blue-gray color, but it generated a vibrant yellow-colored light within five minutes when it was exposed to volatile amine vapors. Both sensors reverted to the original hue when exposed to neutralizing vapors, demonstrating that they were reversible. Finally, the team used the amine-responsive handy pen to distinguish between a salmon sample that had been refrigerated and one that had been left at room temperature for 48 hours. The researchers say that other handy pens could be easily developed by using different vapor-sensitive AIEgens, which could be applied to food safety, environmental monitoring or public safety applications.

###

The authors acknowledge funding from Science and Technology Planning Project of Guangdong Province of China, Educational Commission of Guangdong Province of China, the Social Science and Technology Development Project of Dongguan, Guangdong International Cooperation Project, the Science and Technology Plan of Shenzhen, the UNSW-CAS Collaborative Research Seed Fund Program and the Shenzhen Institute of Advanced Technology Innovation Program for Excellent Young Researchers.

The abstract that accompanies this paper is available here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.  

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.  

Follow us: Twitter | Facebook

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/314604
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. 'Handy pen' lights up when exposed to nerve gas or spoiled food vapors. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。