GSTDTAP  > 气候变化
DOI10.1029/2017JD027785
Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set
Siemann, Amanda L.; Chaney, Nathaniel; Wood, Eric F.
2018-05-27
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:10页码:4988-5000
文章类型Article
语种英语
国家USA
英文摘要

Sensible heat flux directly influences local and regional climate and can be estimated using remotely sensed satellite observations. Although significant efforts have been made to estimate sensitivity and uncertainty in energy flux estimates at the local and regional scales using both models and algorithms compatible with remotely sensed satellite data, few studies quantify the sensitivity or uncertainty at the global scale, enabling a global comparison among uncertainty drivers. This study uses the 10 percentile change from the mean value in the empirical cumulative distribution function for the distribution of each input data set to calculate the sensitivity of the unconstrained, terrestrial sensible heat flux to change in the input data sets and uses this sensitivity in a first-order analysis of the uncertainty in the sensible heat flux. The largest sensitivities to the Zilitinkevich empirical constant (C-zil) are in the Amazon, northern Australia, and the plains of North America, while the sensitivity of the sensible heat flux to the temperature gradient is largest in dry regions of shorter vegetation. The C-zil contributes most to the uncertainty of over 50-100W/m(2) in the Amazon and Indonesia, while the temperature gradient contributes most to the uncertainty elsewhere, producing an overall global average uncertainty of 24.8W/m(2). Future work should reduce the uncertainties in the temperature gradient and the C-zil to reduce the uncertainty in sensible heat flux estimates.


英文关键词sensible heat flux uncertainty sensitivity remotely sensed satellite data
领域气候变化
收录类别SCI-E
WOS记录号WOS:000435445600013
WOS关键词MODEL CONDITIONAL PROCESSOR ; LAND-SURFACE TEMPERATURE ; ENERGY-BALANCE ALGORITHM ; REMOTELY-SENSED DATA ; EVAPOTRANSPIRATION ESTIMATION ; PREDICTIVE UNCERTAINTY ; SCHEMES ; SOIL ; SCALE ; HIRS
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/32397
专题气候变化
作者单位Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
推荐引用方式
GB/T 7714
Siemann, Amanda L.,Chaney, Nathaniel,Wood, Eric F.. Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(10):4988-5000.
APA Siemann, Amanda L.,Chaney, Nathaniel,&Wood, Eric F..(2018).Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(10),4988-5000.
MLA Siemann, Amanda L.,et al."Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.10(2018):4988-5000.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Siemann, Amanda L.]的文章
[Chaney, Nathaniel]的文章
[Wood, Eric F.]的文章
百度学术
百度学术中相似的文章
[Siemann, Amanda L.]的文章
[Chaney, Nathaniel]的文章
[Wood, Eric F.]的文章
必应学术
必应学术中相似的文章
[Siemann, Amanda L.]的文章
[Chaney, Nathaniel]的文章
[Wood, Eric F.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。