Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2017JD027785 |
Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set | |
Siemann, Amanda L.; Chaney, Nathaniel; Wood, Eric F. | |
2018-05-27 | |
发表期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
![]() |
ISSN | 2169-897X |
EISSN | 2169-8996 |
出版年 | 2018 |
卷号 | 123期号:10页码:4988-5000 |
文章类型 | Article |
语种 | 英语 |
国家 | USA |
英文摘要 | Sensible heat flux directly influences local and regional climate and can be estimated using remotely sensed satellite observations. Although significant efforts have been made to estimate sensitivity and uncertainty in energy flux estimates at the local and regional scales using both models and algorithms compatible with remotely sensed satellite data, few studies quantify the sensitivity or uncertainty at the global scale, enabling a global comparison among uncertainty drivers. This study uses the 10 percentile change from the mean value in the empirical cumulative distribution function for the distribution of each input data set to calculate the sensitivity of the unconstrained, terrestrial sensible heat flux to change in the input data sets and uses this sensitivity in a first-order analysis of the uncertainty in the sensible heat flux. The largest sensitivities to the Zilitinkevich empirical constant (C-zil) are in the Amazon, northern Australia, and the plains of North America, while the sensitivity of the sensible heat flux to the temperature gradient is largest in dry regions of shorter vegetation. The C-zil contributes most to the uncertainty of over 50-100W/m(2) in the Amazon and Indonesia, while the temperature gradient contributes most to the uncertainty elsewhere, producing an overall global average uncertainty of 24.8W/m(2). Future work should reduce the uncertainties in the temperature gradient and the C-zil to reduce the uncertainty in sensible heat flux estimates. |
英文关键词 | sensible heat flux uncertainty sensitivity remotely sensed satellite data |
领域 | 气候变化 |
收录类别 | SCI-E |
WOS记录号 | WOS:000435445600013 |
WOS关键词 | MODEL CONDITIONAL PROCESSOR ; LAND-SURFACE TEMPERATURE ; ENERGY-BALANCE ALGORITHM ; REMOTELY-SENSED DATA ; EVAPOTRANSPIRATION ESTIMATION ; PREDICTIVE UNCERTAINTY ; SCHEMES ; SOIL ; SCALE ; HIRS |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/32397 |
专题 | 气候变化 |
作者单位 | Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA |
推荐引用方式 GB/T 7714 | Siemann, Amanda L.,Chaney, Nathaniel,Wood, Eric F.. Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(10):4988-5000. |
APA | Siemann, Amanda L.,Chaney, Nathaniel,&Wood, Eric F..(2018).Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(10),4988-5000. |
MLA | Siemann, Amanda L.,et al."Sensitivity and Uncertainty of a Long-Term, High-Resolution, Global, Terrestrial Sensible Heat Flux Data Set".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.10(2018):4988-5000. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论