Global S&T Development Trend Analysis Platform of Resources and Environment
| DOI | 10.1002/2017JD027732 |
| Estimation of Turbulent Heat Fluxes by Assimilation of Land Surface Temperature Observations From GOES Satellites Into an Ensemble Kalman Smoother Framework | |
| Xu, Tongren1; Bateni, S. M.2,3; Neale, C. M. U.4; Auligne, T.5,6; Liu, Shaomin1 | |
| 2018-03-16 | |
| 发表期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
![]() |
| ISSN | 2169-897X |
| EISSN | 2169-8996 |
| 出版年 | 2018 |
| 卷号 | 123期号:5页码:2409-2423 |
| 文章类型 | Article |
| 语种 | 英语 |
| 国家 | Peoples R China; USA |
| 英文摘要 | In different studies, land surface temperature (LST) observations have been assimilated into the variational data assimilation (VDA) approaches to estimate turbulent heat fluxes. The VDA methods yield accurate turbulent heat fluxes, but they need an adjoint model, which is difficult to derive and code. They also cannot directly calculate the uncertainty of their estimates. To overcome the abovementioned drawbacks, this study assimilates LST data from Geostationary Operational Environmental Satellite into the ensemble Kalman smoother (EnKS) data assimilation system to estimate turbulent heat fluxes. EnKS does not need to derive the adjoint term and directly generates statistical information on the accuracy of its predictions. It uses the heat diffusion equation to simulate LST. EnKS with the state augmentation approach finds the optimal values for the unknown parameters (i.e., evaporative fraction and neutral bulk heat transfer coefficient, C-HN) by minimizing the misfit between LST observations from Geostationary Operational Environmental Satellite and LST estimations from the heat diffusion equation. The augmented EnKS scheme is tested over six Ameriflux sites with a wide range of hydrological and vegetative conditions. The results show that EnKS can predict not only the model parameters and turbulent heat fluxes but also their uncertainties over a variety of land surface conditions. Compared to the variational method, EnKS yields suboptimal turbulent heat fluxes. However, suboptimality of EnKS is small, and its results are comparable to those of the VDA method. Overall, EnKS is a feasible and reliable method for estimation of turbulent heat fluxes. |
| 领域 | 气候变化 |
| 收录类别 | SCI-E |
| WOS记录号 | WOS:000428437100003 |
| WOS关键词 | ENERGY BALANCE COMPONENTS ; REMOTE-SENSING DATA ; SOIL-MOISTURE ; REGIONAL EVAPOTRANSPIRATION ; VARIATIONAL ESTIMATION ; EVAPORATIVE FRACTION ; TRANSFER COEFFICIENT ; VEGETATION DYNAMICS ; FIELD EXPERIMENT ; HIWATER-MUSOEXE |
| WOS类目 | Meteorology & Atmospheric Sciences |
| WOS研究方向 | Meteorology & Atmospheric Sciences |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/32446 |
| 专题 | 气候变化 |
| 作者单位 | 1.Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China; 2.Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI 96822 USA; 3.Univ Hawaii Manoa, Water Resources Res Ctr, Honolulu, HI 96822 USA; 4.Univ Nebraska, Daugherty Water Food Global Inst, Lincoln, NE USA; 5.JCSDA, College Pk, MD USA; 6.UCAR, Boulder, CO USA |
| 推荐引用方式 GB/T 7714 | Xu, Tongren,Bateni, S. M.,Neale, C. M. U.,et al. Estimation of Turbulent Heat Fluxes by Assimilation of Land Surface Temperature Observations From GOES Satellites Into an Ensemble Kalman Smoother Framework[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(5):2409-2423. |
| APA | Xu, Tongren,Bateni, S. M.,Neale, C. M. U.,Auligne, T.,&Liu, Shaomin.(2018).Estimation of Turbulent Heat Fluxes by Assimilation of Land Surface Temperature Observations From GOES Satellites Into an Ensemble Kalman Smoother Framework.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(5),2409-2423. |
| MLA | Xu, Tongren,et al."Estimation of Turbulent Heat Fluxes by Assimilation of Land Surface Temperature Observations From GOES Satellites Into an Ensemble Kalman Smoother Framework".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.5(2018):2409-2423. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论