GSTDTAP  > 气候变化
DOI10.1126/science.abf2998
Direct observation of deterministic macroscopic entanglement
Shlomi Kotler; Gabriel A. Peterson; Ezad Shojaee; Florent Lecocq; Katarina Cicak; Alex Kwiatkowski; Shawn Geller; Scott Glancy; Emanuel Knill; Raymond W. Simmonds; José Aumentado; John D. Teufel
2021-05-07
发表期刊Science
出版年2021
英文摘要Quantum entanglement occurs when two separate entities become strongly linked in a way that cannot be explained by classical physics; it is a powerful resource in quantum communication protocols and advanced technologies that aim to exploit the enhanced capabilities of quantum systems. To date, entanglement has generally been limited to microscopic quantum units such as pairs or multiples of single ions, atoms, photons, and so on. Kotler et al. and Mercier de Lépinay et al. demonstrate the ability to extend quantum entanglement to massive macroscopic systems (see the Perspective by Lau and Clerk). Entanglement of two mechanical oscillators on such a large length and mass scale is expected to find widespread use in both applications and fundamental physics to probe the boundary between the classical and quantum worlds. Science , this issue p. [622][1], p. [625][2]; see also p. [570][3] Quantum entanglement of mechanical systems emerges when distinct objects move with such a high degree of correlation that they can no longer be described separately. Although quantum mechanics presumably applies to objects of all sizes, directly observing entanglement becomes challenging as masses increase, requiring measurement and control with a vanishingly small error. Here, using pulsed electromechanics, we deterministically entangle two mechanical drumheads with masses of 70 picograms. Through nearly quantum-limited measurements of the position and momentum quadratures of both drums, we perform quantum state tomography and thereby directly observe entanglement. Such entangled macroscopic systems are poised to serve in fundamental tests of quantum mechanics, enable sensing beyond the standard quantum limit, and function as long-lived nodes of future quantum networks. [1]: /lookup/doi/10.1126/science.abf2998 [2]: /lookup/doi/10.1126/science.abf5389 [3]: /lookup/doi/10.1126/science.abh3419
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/325941
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Shlomi Kotler,Gabriel A. Peterson,Ezad Shojaee,et al. Direct observation of deterministic macroscopic entanglement[J]. Science,2021.
APA Shlomi Kotler.,Gabriel A. Peterson.,Ezad Shojaee.,Florent Lecocq.,Katarina Cicak.,...&John D. Teufel.(2021).Direct observation of deterministic macroscopic entanglement.Science.
MLA Shlomi Kotler,et al."Direct observation of deterministic macroscopic entanglement".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shlomi Kotler]的文章
[Gabriel A. Peterson]的文章
[Ezad Shojaee]的文章
百度学术
百度学术中相似的文章
[Shlomi Kotler]的文章
[Gabriel A. Peterson]的文章
[Ezad Shojaee]的文章
必应学术
必应学术中相似的文章
[Shlomi Kotler]的文章
[Gabriel A. Peterson]的文章
[Ezad Shojaee]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。