Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1126/science.abh1213 |
Is chiral crystal shape inherited or acquired? | |
Inna Popov | |
2021-05-14 | |
发表期刊 | Science
![]() |
出版年 | 2021 |
英文摘要 | A glove fits only one of our hands because the mirror images of gloves (and our hands) cannot be superimposed. Molecules or crystals that have this property are said to be chiral. Since the work of Pasteur on the separation of the sodium ammonium salts of racemic tartaric acid into right- and left-handed crystals ([ 1 ][1]), how and whether molecular chirality is necessary for formation of chiral crystals has been explored. Even atoms such as tellurium (Te) ([ 2 ][2]) can form chiral crystals because their chemical bonding can create helices (see the figure, top) that are right- or left-handed, although such helices can also pack to form achiral crystals. On page 729 of this issue, Ben-Moshe et al. ([ 3 ][3]) explored what determines the formation of chiral Te nanocrystals through controlled colloidal synthesis and advanced electron microscopy. Chiral crystals grew at medium supersaturation, apparently driven by screw dislocations in the crystal nuclei. Although compositionally identical, the chiral forms of the same entity (enantiomers) are dissimilar in that they polarize light in opposite directions ([ 4 ][4]). Most biological molecules are chiral. For reasons yet to be understood, natural amino acids are almost exclusively left-handed, but sugars are right-handed ([ 5 ][5]). The biological activity of enantiomers can differ. Some enantiomers are perceived as different odors ([ 6 ][6]), and for drug molecules, usually only one of several enantiomers is active, and some inactive forms can be unsafe. However, different enantiomers of a chiral molecule spontaneously crystallizing into separate crystals from a racemic mixture, as seen by Pasteur, is rare. Indeed, unlike its salt, the higher melting form of tartaric acid (“racemic acid”) grows achiral crystals, with the right- and left-handed molecules packing together ([ 7 ][7]). Chirality of crystals can also be induced. Amino acid binding induces chirality in the growth of calcite, which has no intrinsic chirality ([ 8 ][8]). Chiral biomolecules can bind as shape-controlling ligands in the reductive synthesis of selenium and Te nanocrystals where the atoms pack helically ([ 9 ][9]). Crystal shape changes (such as twisting) and lattice impurities can be correlated ([ 10 ][10]). To explore the role of ligands and impurities directing crystallization versus the role of the intrinsically chiral helical atomic arrangement, Ben-Moshe et al. prepared Te crystals by reducing its oxide with various amounts of hydrazine in the presence of either chiral L- or D-penicillamine or achiral mercaptopropionic acid. They created and structurally characterized ensembles of 100- to 300-nm size particles (see the figure, middle). Crystals obtained at medium supersaturation (slower kinetics) grew chirally no matter which ligand was used (see the figure, middle), but Te nanocrystals obtained at high supersaturation rate (fast growth) acquired an achiral shape even in the presence of chiral ligands (see the figure, bottom). Ben-Moshe et al. that reaction kinetics played a key role and that the intrinsic lattice chirality of Te is only a prerequisite for the chiral morphology. ![Figure][11] From helices to crystals Ben-Moshe et al. show that kinetics determines whether chiral tellurium (Te) nanocrystals form. GRAPHIC: C. BICKEL/ SCIENCE ; (IMAGES) BEN-MOSHE ET AL. ([ 3 ][3]) The authors clarified how chiral ligands affect the crystal shape by quantifying morphology in populations of Te nanocrystals grown separately with different ligands. Although equal fractions of each shape's handedness grew with the achiral ligand, the populations grown with the chiral ligand of one handedness contained larger fractions of crystals shaped in the same sense. They conclude that being able to bias the relative abundance of mirror-image chiral ligands is neither necessary nor sufficient for chiral shape formation. For a few nanocrystals, the authors could determine both shape- and lattice-handedness. As in Pasteur's experiments, the crystal lattice and shape had the same chiral sense. Unlike the achiral shapes, chirally shaped Te crystallites are structurally imperfect. They are twisted, contain voids, and show structural signatures of one-dimensional lattice defects, namely screw dislocations. Ben-Moshe et al. suggest that these screw dislocations in the crystal nuclei obtained at medium saturation rates cause chiral crystal shapes, but additional experimental work is needed to prove the mechanism providing. The study of Ben-Moshe et al. of achiral and chiral Te nanocrystals also has potential technological applications. Their systematically planned experiment with a model material allowed them to separate and develop a hierarchy of the factors affecting the crystal shape. This process could be repeated with other materials that possess lattice chirality and used to manufacture enantiopure materials. In the Te system itself, the lattice arrangement in achirally shaped crystals is still unknown and could include atomic helixes of both senses ([ 7 ][7]). It will be of interest to see how each morphology type affects the energy landscape of crystalline Te. 1. [↵][12]1. L. Pasteur , Ann. Chim. Phys. 24, 442 (1848). [OpenUrl][13] 2. [↵][14]1. B. Escaig , J. Phys. Colloq. 35, C7 (1974). [OpenUrl][15] 3. [↵][16]1. A. Ben-Moshe et al ., Science 372, 729 (2021). [OpenUrl][17][Abstract/FREE Full Text][18] 4. [↵][19]1. M. Hentschel et al ., Sci. Adv. 3, e1602735 (2017). [OpenUrl][20][FREE Full Text][21] 5. [↵][22]1. B. L. Feringa , Science 292, 2021 (2001). [OpenUrl][23][FREE Full Text][24] 6. [↵][25]1. L. Friedman, 2. J. G. Miller , Science 172, 1044 (1971). [OpenUrl][26][Abstract/FREE Full Text][27] 7. [↵][28]1. J. S. Siegel 1. A. Collet, 2. L. Ziminski, 3. C. Garcia, 4. F. Vigne-Maeder , in Supramolecular Stereochemistry, J. S. Siegel, Ed. (Kluwer Academic, 1995), pp. 91–110. 8. [↵][29]1. C. A. Orme et al ., Nature 411, 775 (2001). [OpenUrl][30][CrossRef][31][GeoRef][32][PubMed][33] 9. [↵][34]1. A. Ben-Moshe et al ., Nat. Commun. 5, 4302 (2014). [OpenUrl][35][CrossRef][36][PubMed][37] 10. [↵][38]1. A. G. Shtukenberg et al ., Angew. Chem. Int. Ed. 53, 672 (2014). [OpenUrl][39][CrossRef][40][PubMed][41] Acknowledgments: The author acknowledges the financial support of the Hebrew University Center for Nanoscience and Nanotechnology. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: pending:yes [12]: #xref-ref-1-1 "View reference 1 in text" [13]: {openurl}?query=rft.jtitle%253DAnn.%2BChim.%2BPhys.%26rft.volume%253D24%26rft.spage%253D442%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [14]: #xref-ref-2-1 "View reference 2 in text" [15]: {openurl}?query=rft.jtitle%253DJ.%2BPhys.%2BColloq.%26rft.volume%253D35%26rft.spage%253D7C%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: #xref-ref-3-1 "View reference 3 in text" [17]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DBen-Moshe%26rft.auinit1%253DA.%26rft.volume%253D372%26rft.issue%253D6543%26rft.spage%253D729%26rft.epage%253D733%26rft.atitle%253DThe%2Bchain%2Bof%2Bchirality%2Btransfer%2Bin%2Btellurium%2Bnanocrystals%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abf9645%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzIvNjU0My83MjkiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzIvNjU0My82ODguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [19]: #xref-ref-4-1 "View reference 4 in text" [20]: {openurl}?query=rft.jtitle%253DScience%2BAdvances%26rft.stitle%253DSci%2BAdv%26rft.aulast%253DHentschel%26rft.auinit1%253DM.%26rft.volume%253D3%26rft.issue%253D5%26rft.spage%253De1602735%26rft.epage%253De1602735%26rft.atitle%253DChiral%2Bplasmonics%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fsciadv.1602735%26rft_id%253Dinfo%253Apmid%252F28560336%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo4OiJhZHZhbmNlcyI7czo1OiJyZXNpZCI7czoxMjoiMy81L2UxNjAyNzM1IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcyLzY1NDMvNjg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [22]: #xref-ref-5-1 "View reference 5 in text" [23]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DFeringa%26rft.auinit1%253DB.%2BL.%26rft.volume%253D292%26rft.issue%253D5524%26rft.spage%253D2021%26rft.epage%253D2022%26rft.atitle%253DCHEMISTRY%253A%2BA%2BNew%2BTwist%2Bon%2BChirality%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1062070%26rft_id%253Dinfo%253Apmid%252F11408645%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIyOTIvNTUyNC8yMDIxIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcyLzY1NDMvNjg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [25]: #xref-ref-6-1 "View reference 6 in text" [26]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DFriedman%26rft.auinit1%253DL.%26rft.volume%253D172%26rft.issue%253D3987%26rft.spage%253D1044%26rft.epage%253D1046%26rft.atitle%253DOdor%2BIncongruity%2Band%2BChirality%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.172.3987.1044%26rft_id%253Dinfo%253Apmid%252F5573954%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [27]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIxNzIvMzk4Ny8xMDQ0IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcyLzY1NDMvNjg4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [28]: #xref-ref-7-1 "View reference 7 in text" [29]: #xref-ref-8-1 "View reference 8 in text" [30]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.volume%253D411%26rft.issue%253D6839%26rft.spage%253D775%26rft.epage%253D778%26rft.atitle%253DFormation%2Bof%2Bchiral%2Bmorphologies%2Bthrough%2Bselective%2Bbinding%2Bof%2Bamino%2Bacids%2Bto%2Bcalcite%2Bsurface%2Bsteps%26rft_id%253Dinfo%253Adoi%252F10.1038%252F35081034%26rft_id%253Dinfo%253Apmid%252F11459051%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [31]: /lookup/external-ref?access_num=10.1038/35081034&link_type=DOI [32]: /lookup/external-ref?access_num=2001049703&link_type=GEOREF [33]: /lookup/external-ref?access_num=11459051&link_type=MED&atom=%2Fsci%2F372%2F6543%2F688.atom [34]: #xref-ref-9-1 "View reference 9 in text" [35]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D5%26rft.spage%253D4302%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fncomms5302%26rft_id%253Dinfo%253Apmid%252F25001884%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: /lookup/external-ref?access_num=10.1038/ncomms5302&link_type=DOI [37]: /lookup/external-ref?access_num=25001884&link_type=MED&atom=%2Fsci%2F372%2F6543%2F688.atom [38]: #xref-ref-10-1 "View reference 10 in text" [39]: {openurl}?query=rft.jtitle%253DAngew.%2BChem.%2BInt.%2BEd.%26rft.volume%253D53%26rft.spage%253D672%26rft_id%253Dinfo%253Adoi%252F10.1002%252Fanie.201301223%26rft_id%253Dinfo%253Apmid%252F24382661%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: /lookup/external-ref?access_num=10.1002/anie.201301223&link_type=DOI [41]: /lookup/external-ref?access_num=24382661&link_type=MED&atom=%2Fsci%2F372%2F6543%2F688.atom |
领域 | 气候变化 ; 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/326809 |
专题 | 气候变化 资源环境科学 |
推荐引用方式 GB/T 7714 | Inna Popov. Is chiral crystal shape inherited or acquired?[J]. Science,2021. |
APA | Inna Popov.(2021).Is chiral crystal shape inherited or acquired?.Science. |
MLA | Inna Popov."Is chiral crystal shape inherited or acquired?".Science (2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Inna Popov]的文章 |
百度学术 |
百度学术中相似的文章 |
[Inna Popov]的文章 |
必应学术 |
必应学术中相似的文章 |
[Inna Popov]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论