GSTDTAP  > 气候变化
DOI10.1111/gcb.15666
Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions?
Emma Stell; Daniel Warner; Jinshi Jian; Ben Bond-Lamberty; Rodrigo Vargas
2021-05-20
发表期刊Global Change Biology
出版年2021
英文摘要

Soil respiration (Rs), the efflux of CO2 from soils to the atmosphere, is a major component of the terrestrial carbon cycle, but is poorly constrained from regional to global scales. The global soil respiration database (SRDB) is a compilation of in situ Rs observations from around the globe that has been consistently updated with new measurements over the past decade. It is unclear whether the addition of data to new versions has produced better-constrained global Rs estimates. We compared two versions of the SRDB (v3.0 n = 5173 and v5.0 n = 10,366) to determine how additional data influenced global Rs annual sum, spatial patterns and associated uncertainty (1 km spatial resolution) using a machine learning approach. A quantile regression forest model parameterized using SRDBv3 yielded a global Rs sum of 88.6 Pg C year−1, and associated uncertainty of 29.9 (mean absolute error) and 57.9 (standard deviation) Pg C year−1, whereas parameterization using SRDBv5 yielded 96.5 Pg C year−1 and associated uncertainty of 30.2 (mean average error) and 73.4 (standard deviation) Pg C year−1. Empirically estimated global heterotrophic respiration (Rh) from v3 and v5 were 49.9–50.2 (mean 50.1) and 53.3–53.5 (mean 53.4) Pg C year−1, respectively. SRDBv5’s inclusion of new data from underrepresented regions (e.g., Asia, Africa, South America) resulted in overall higher model uncertainty. The largest differences between models parameterized with different SRDVB versions were in arid/semi-arid regions. The SRDBv5 is still biased toward northern latitudes and temperate zones, so we tested an optimized global distribution of Rs measurements, which resulted in a global sum of 96.4 ± 21.4 Pg C year−1 with an overall lower model uncertainty. These results support current global estimates of Rs but highlight spatial biases that influence model parameterization and interpretation and provide insights for design of environmental networks to improve global-scale Rs estimates.

领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/328676
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Emma Stell,Daniel Warner,Jinshi Jian,et al. Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions?[J]. Global Change Biology,2021.
APA Emma Stell,Daniel Warner,Jinshi Jian,Ben Bond-Lamberty,&Rodrigo Vargas.(2021).Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions?.Global Change Biology.
MLA Emma Stell,et al."Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions?".Global Change Biology (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Emma Stell]的文章
[Daniel Warner]的文章
[Jinshi Jian]的文章
百度学术
百度学术中相似的文章
[Emma Stell]的文章
[Daniel Warner]的文章
[Jinshi Jian]的文章
必应学术
必应学术中相似的文章
[Emma Stell]的文章
[Daniel Warner]的文章
[Jinshi Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。