GSTDTAP  > 气候变化
Human stem cells enable model to test drug impact on brain's blood barrier
admin
2021-06-30
发布年2021
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Isabelle Matthiesen prepares the brain-on-chip device for testing. view more 

Credit: Saskia Ludwig

Using an experimental model to simulate the blood-brain barrier, scientists in Sweden reported in unprecedented detail how antioxidants protect the brain from inflammation caused by neurodegenerative diseases such as Alzheimer's and Parkinson's.

The study, conducted as a proof of concept by brain model developers at KTH Royal Institute of Technology in Stockholm, showed in minute-by-minute detail how the blood-brain barrier reacts to high levels of inflammation after the administration of a next-generation derivative of the widely-used anti-inflammatory drug, NAC (N-acetylcysteine).

The testing of NACA (N-Acetylcysteine Amide) for the first time with human stem cell-derived cells showed that the breakdown of the barrier under high loads of inflammation is "actually more complex than we thought," says KTH researcher Thomas Winkler.

The findings were published in the journal, Small.

"This was the first test of this NACA compound with human stem cells," Winkler says. "The results show that we can use this to test other derivatives of the NAC compound--as well as different antioxidants--and see if we find anything that has even higher neural protection."

Co-author Isabelle Matthiesen, a PhD student at KTH, says that the research is not meant to provide definitive proof of how anti-inflammatories affect the brain; yet the results provide encouraging evidence that the model could replace testing drugs on animals before clinical trials.

"We successfully based the barrier on human stem cell-derived cells so this model is relevant to drugs being testing for humans, while other models are made with animal cells or are too simple to monitor closely," Matthiesen says.

The researchers' "brain-on-chip" model is actually a two layered set-up where small channels carry simulated blood and inflammation agents, as well as anti-inflammatory drugs, through compartments simulating the perivascular space within the brain, and the external vascular system.

Just as in a real brain, these two areas are separated by a blood brain barrier--a membrane of cells that line the blood vessels of the brain.

This layer is held together by tight junctions that prevent small molecules from diffusing through the gaps between the cells. The barrier serves as a filter to prevent harmful substances from passing into the brain tissue from the bloodstream.

In the model, the barrier is represented by a membrane of cells derived from the stem cells of a single patient, knitted together with proteins.

Cell activity is monitored by electronic sensors which are able to take measurements every minute, as the barrier is exposed to stress similar to that which neurodegenerative diseases cause.

Winkler says that the minute-by-minute detail is important because many cellular processes happen quickly.

"As an example, when you first administer a drug, it causes a huge change in cells, then levels out," Winkler says. "In the typical methods of testing drugs, you wouldn't see those rapid changes.

"We can now see that the breakdown of the blood brain barrier happens fast under stress and we could see how that could be prevented with the anti-oxidant," he says.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/332329
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Human stem cells enable model to test drug impact on brain's blood barrier. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。