Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1126/science.abg8790 |
Single-molecule laser nanospectroscopy with micro–electron volt energy resolution | |
Hiroshi Imada; Miyabi Imai-Imada; Kuniyuki Miwa; Hidemasa Yamane; Takeshi Iwasa; Yusuke Tanaka; Naoyuki Toriumi; Kensuke Kimura; Nobuhiko Yokoshi; Atsuya Muranaka; Masanobu Uchiyama; Tetsuya Taketsugu; Yuichiro K. Kato; Hajime Ishihara; Yousoo Kim | |
2021-07-02 | |
发表期刊 | Science
![]() |
出版年 | 2021 |
英文摘要 | Microscopic understanding and molecular-level control of individual electronic quantum states of a single molecule are a long-standing challenge in spectroscopy. Imada et al. found that a narrow-line tunable laser combined with a scanning tunneling microscope was able to generate photoluminescence spectra of the electronic and vibrational states of single molecules with micro–electron volt energy resolution and submolecular spatial resolution. The authors also discovered a way to tune the energy levels through a linear Stark effect and plasmon-exciton coupling in the tunneling junction. The proposed technique paves the way to efficient exploitation of energy conversion dynamics in electronic excited states, which constitutes the bedrock principle of such systems as LEDs, photovoltaics, and photosynthetic cells. Science , abg8790, this issue p. [95][1] Ways to characterize and control excited states at the single-molecule and atomic levels are needed to exploit excitation-triggered energy-conversion processes. Here, we present a single-molecule spectroscopic method with micro–electron volt energy and submolecular-spatial resolution using laser driving of nanocavity plasmons to induce molecular luminescence in scanning tunneling microscopy. This tunable and monochromatic nanoprobe allows state-selective characterization of the energy levels and linewidths of individual electronic and vibrational quantum states of a single molecule. Moreover, we demonstrate that the energy levels of the states can be finely tuned by using the Stark effect and plasmon-exciton coupling in the tunneling junction. Our technique and findings open a route to the creation of designed energy-converting functions by using tuned energy levels of molecular systems. [1]: /lookup/doi/10.1126/science.abg8790 |
领域 | 气候变化 ; 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/334185 |
专题 | 气候变化 资源环境科学 |
推荐引用方式 GB/T 7714 | Hiroshi Imada,Miyabi Imai-Imada,Kuniyuki Miwa,等. Single-molecule laser nanospectroscopy with micro–electron volt energy resolution[J]. Science,2021. |
APA | Hiroshi Imada.,Miyabi Imai-Imada.,Kuniyuki Miwa.,Hidemasa Yamane.,Takeshi Iwasa.,...&Yousoo Kim.(2021).Single-molecule laser nanospectroscopy with micro–electron volt energy resolution.Science. |
MLA | Hiroshi Imada,et al."Single-molecule laser nanospectroscopy with micro–electron volt energy resolution".Science (2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论