GSTDTAP  > 气候变化
DOI10.1126/science.abf2155
Wafer-scale heterostructured piezoelectric bio-organic thin films
Fan Yang; Jun Li; Yin Long; Ziyi Zhang; Linfeng Wang; Jiajie Sui; Yutao Dong; Yizhan Wang; Rachel Taylor; Dalong Ni; Weibo Cai; Ping Wang; Timothy Hacker; Xudong Wang
2021-07-16
发表期刊Science
出版年2021
英文摘要Piezoelectric materials enable a reversible conversion between mechanical pressure and electric charge and are useful for sensors, actuators, and high-precision motors. Yang et al. developed a method for making high-quality crystalline thin films of piezoelectric γ-glycine crystals that are grown and refined between layers of polyvinyl alcohol (PVA) (see the Perspective by Berger). The PVA layers are essential to promoting the crystallization of the preferred crystal phase with the polar axis oriented perpendicular to the film plan because of hydrogen bonding at the PVA-glycine interface. The thin films show a macroscopic piezoelectric response and high stability in aqueous environments. The films are water soluble and, when suitably packaged, could be implanted into a biodegradable energy-harvesting device. Science , abf2155, this issue p. [337][1]; see also abj0424, p. [278][2] Piezoelectric biomaterials are intrinsically suitable for coupling mechanical and electrical energy in biological systems to achieve in vivo real-time sensing, actuation, and electricity generation. However, the inability to synthesize and align the piezoelectric phase at a large scale remains a roadblock toward practical applications. We present a wafer-scale approach to creating piezoelectric biomaterial thin films based on γ-glycine crystals. The thin film has a sandwich structure, where a crystalline glycine layer self-assembles and automatically aligns between two polyvinyl alcohol (PVA) thin films. The heterostructured glycine-PVA films exhibit piezoelectric coefficients of 5.3 picocoulombs per newton or 157.5 × 10−3 volt meters per newton and nearly an order of magnitude enhancement of the mechanical flexibility compared with pure glycine crystals. With its natural compatibility and degradability in physiological environments, glycine-PVA films may enable the development of transient implantable electromechanical devices. [1]: /lookup/doi/10.1126/science.abf2155 [2]: /lookup/doi/10.1126/science.abj0424
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/334394
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Fan Yang,Jun Li,Yin Long,et al. Wafer-scale heterostructured piezoelectric bio-organic thin films[J]. Science,2021.
APA Fan Yang.,Jun Li.,Yin Long.,Ziyi Zhang.,Linfeng Wang.,...&Xudong Wang.(2021).Wafer-scale heterostructured piezoelectric bio-organic thin films.Science.
MLA Fan Yang,et al."Wafer-scale heterostructured piezoelectric bio-organic thin films".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan Yang]的文章
[Jun Li]的文章
[Yin Long]的文章
百度学术
百度学术中相似的文章
[Fan Yang]的文章
[Jun Li]的文章
[Yin Long]的文章
必应学术
必应学术中相似的文章
[Fan Yang]的文章
[Jun Li]的文章
[Yin Long]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。