GSTDTAP  > 气候变化
DOI10.1029/2021GL093704
A Bayesian Machine Learning Algorithm for Predicting ENSO Using Short Observational Time Series
Nan Chen; Faheem Gilani; John Harlim
2021-08-16
发表期刊Geophysical Research Letters
出版年2021
英文摘要

A simple and efficient Bayesian machine learning (BML) training algorithm, which exploits only a 20-year short observational time series and an approximate prior model, is developed to predict the Niño 3 sea surface temperature (SST) index. The BML forecast significantly outperforms model-based ensemble predictions and standard machine learning forecasts. Even with a simple feedforward neural network, the BML forecast is skillful for 9.5 months. Remarkably, the BML forecast overcomes the spring predictability barrier to a large extent: the forecast starting from spring remains skillful for nearly 10 months. The BML algorithm can also effectively utilize multiscale features: the BML forecast of SST using SST, thermocline, and windburst improves on the BML forecast using just SST by at least 2 months. Finally, the BML algorithm also reduces the forecast uncertainty of neural networks and is robust to input perturbations.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/335989
专题气候变化
推荐引用方式
GB/T 7714
Nan Chen,Faheem Gilani,John Harlim. A Bayesian Machine Learning Algorithm for Predicting ENSO Using Short Observational Time Series[J]. Geophysical Research Letters,2021.
APA Nan Chen,Faheem Gilani,&John Harlim.(2021).A Bayesian Machine Learning Algorithm for Predicting ENSO Using Short Observational Time Series.Geophysical Research Letters.
MLA Nan Chen,et al."A Bayesian Machine Learning Algorithm for Predicting ENSO Using Short Observational Time Series".Geophysical Research Letters (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nan Chen]的文章
[Faheem Gilani]的文章
[John Harlim]的文章
百度学术
百度学术中相似的文章
[Nan Chen]的文章
[Faheem Gilani]的文章
[John Harlim]的文章
必应学术
必应学术中相似的文章
[Nan Chen]的文章
[Faheem Gilani]的文章
[John Harlim]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。