GSTDTAP  > 气候变化
DOI10.1126/science.abk1671
Structural hierarchy defeats alloy cracking
Xianghai An
2021-08-20
发表期刊Science
出版年2021
英文摘要High-performance alloys play a critical role in demanding engineering applications in manufacturing, infrastructure, and transportation ([ 1 ][1]). In structural applications, they must be strong, ductile, durable, and damage tolerant. However, these characteristics cannot currently be obtained simultaneously ([ 2 ][2]). Microscale cracks initiated in a tensioned material tend to propagate rapidly and unstably. This process, in turn, can cause catastrophic failure during service or can create strain that becomes highly localized near the crack tip, which makes it difficult to deform the material uniformly during processing. On page 912 of this issue, Shi et al. ([ 3 ][3]) show that a directionally solidified (DS) eutectic high-entropy alloy (EHEA) develops a hierarchically organized herringbone microstructure that imparts multiscale crack buffering. This material exhibited exceptional damage tolerance over large tensile deformation, as well as ultrahigh uniform elongation. The plasticity of metals mainly results from the movement of dislocations, so to enhance the load-bearing capacity of metal, various internal defects can be introduced to impede dislocation motion ([ 4 ][4]). However, increasing the strength of a materials to a high level invariably leads to a drastic loss of toughness (the material's resistance to fracture) and ductility (the material's stretchability without breaking) ([ 2 ][2]). High local strain energy cannot be effectively dissipated in strong materials when dislocation plasticity is low, so cracks readily initiate and propagate. Thus, many new high-strength alloys cannot be used in safety-critical structural components, such as aircraft jet engines, nuclear containment vessels, and wind turbines, because they cannot meet damage-tolerance requirements. Unlike metals, natural materials, such as bone, shell, and wood, principally consist of hard and soft phases that are hierarchically configured and have favorable combinations of properties ([ 5 ][5]). For example, wood can be tough and also have substantial tensile and compressive strength. Materials scientists have borrowed these architectural features to engineer nanostructural heterogeneities, such as a spatial gradient structure that has nanoscale crystallites (grains) at the surface but larger internal grains ([ 6 ][6]), and a heterogeneous structure in which soft lamellae are embedded in a strong lamellae matrix ([ 7 ][7]). These structures can concurrently activate various plastic deformation mechanisms to increase strength along with ductility and toughness. However, if cracking occurs in ductile materials under tension, uniform deformation will be prohibited by the high strain localization around the crack tip and will undermine ductility. ![Figure][8] Engineering hierarchical heterogeneity Multilevel hierarchy of chemical and nanostructural heterogeneities can enable new combinations of properties and functionalities. Shi et al. directionally solidified a multi–principal element alloy of aluminum (Al), iron (Fe), cobalt (Co), and nickel (Ni) to create a ductile alloy that resists cracking. Integrating the planar defects could further improve materials properties. GRAPHIC: A. MASTIN/ SCIENCE Historically, alloys design has been restricted to a single primary element, such as iron for steels, copper for bronze, and nickel for superalloys. Recently, multi–principal-element alloys (MPEAs), in which three or more major elements—such as CoCrNi, CoCrFeNiMn, and TiZrHfNb—are mixed in roughly equal amounts (see the figure), have opened a vast compositional space for exploration ([ 8 ][9]). At the atomic level, statistical fluctuations in compositional and packing arrangements of the various elements confer many opportunities for tuning properties and functionalities ([ 8 ][9]–[ 10 ][10]). Incorporation of local chemical and structural heterogeneities spanning multiple length scales could greatly enhance materials properties. For example, the combination of crack tolerance and tensile ductility reported by Shi et al. was achieved through their designed DS EHEA (a type of MPEA) that displays multiscale spatial heterogeneities. Chemical complexity occurs at the atomic scale, and at the micrometer scale, alternating soft and hard lamellae form with different cubic crystal structures. These structures in turn make up large distinct eutectic colonies aligned along or inclined to the DS direction that composes a hierarchically arranged herringbone microstructure (see the figure). Deformation initially nucleates microcracks in hard lamellae with limited deformability. The abutting microstructural traits with strong strain hardening capability promote the dissipation of local energy and thus blunt crack tips. These cracks are arrested and confined within individual lamellae, which prohibits their unstable propagation and catastrophic percolation. The persistent nucleation and growth of these microcracks create extrinsic plasticity that compensates for the low ductility of the brittle phase and enables sustainable uniform deformation. Compared to the conventionally solidified alloy, the self-buffering herringbone EHEA was three times more ductile, accompanied with extraordinary damage tolerance and a simultaneous enhancement of strength and toughness. Shi et al. 's engineering of hierarchical chemical and nanostructural heterogeneities heralds a new approach for developing high-performance alloys. Tuning local compositional fluctuations may energetically alter the nature of a material's response to external stimuli like brittleness ([ 9 ][11], [ 10 ][10]). Creation of internal defects within individual nanostructures (see the figure) could activate multiple strengthening and toughening mechanisms ([ 11 ][12]). The heterogeneous microstructures could be programmed to trigger various intrinsic and extrinsic deformation mechanisms ([ 12 ][13]). This design concept will require identifying and quantifying which materials parameters endow specific properties to help unravel how these develop in hierarchical structures. An integrated computational and experimental protocol, in conjunction with data science, could accelerate the establishment of a unified design principle and scientific framework for future mechanistic alloy design. Another formidable conundrum is to precisely control and organize spatially local chemical and structural heterogeneities. The advanced additive manufacturing techniques could, through a dedicate multiscale processing control, unlock the full potential of this new alloy design concept to help tackle major economic, energy, and environmental challenges. 1. [↵][14]1. K. Lu , Science 328, 319 (2010). [OpenUrl][15][Abstract/FREE Full Text][16] 2. [↵][17]1. R. O. Ritchie , Nat. Mater. 10, 817 (2011). [OpenUrl][18][CrossRef][19][PubMed][20] 3. [↵][21]1. P. Shi et al ., Science 373, 912 (2021). [OpenUrl][22][Abstract/FREE Full Text][23] 4. [↵][24]1. K. Lu, 2. L. Lu, 3. S. Suresh , Science 324, 349 (2009). [OpenUrl][25][Abstract/FREE Full Text][26] 5. [↵][27]1. Z. Q. Liu, 2. M. A. Meyers, 3. Z. Zhang, 4. R. O. Ritchie , Prog. Mater. Sci. 88, 467 (2017). [OpenUrl][28][CrossRef][29] 6. [↵][30]1. T. H. Fang, 2. W. L. Li, 3. N. R. Tao, 4. K. Lu , Science 331, 1587 (2011). [OpenUrl][31][Abstract/FREE Full Text][32] 7. [↵][33]1. X. Wu, 2. P. Jiang, 3. L. Chen, 4. F. Yuan, 5. Y. T. Zhu , Proc. Natl. Acad. Sci. U.S.A. 111, 7197 (2014). [OpenUrl][34][Abstract/FREE Full Text][35] 8. [↵][36]1. E. P. George, 2. D. Raabe, 3. R. O. Ritchie , Nat. Rev. Mater. 4, 515 (2019). [OpenUrl][37][CrossRef][38] 9. [↵][39]1. T. Yang et al ., Science 362, 933 (2018). [OpenUrl][40][Abstract/FREE Full Text][41] 10. [↵][42]1. Y. J. Chen et al ., J. Mater. Sci. Technol. 82, 10 (2021). [OpenUrl][43] 11. [↵][44]1. Z. Cheng, 2. H. Zhou, 3. Q. Lu, 4. H. Gao, 5. L. Lu , Science 362, eaau1925 (2018). [OpenUrl][45][Abstract/FREE Full Text][46] 12. [↵][47]1. X. H. An, 2. S. D. Wu, 3. Z. G. Wang, 4. Z. F. Zhang , Prog. Mater. Sci. 101, 1 (2019). [OpenUrl][48] Acknowledgments: The author acknowledges funding from the Australian Research Council (DE170100053) and The University of Sydney Robinson Fellowship. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: pending:yes [9]: #ref-8 [10]: #ref-10 [11]: #ref-9 [12]: #ref-11 [13]: #ref-12 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLu%26rft.auinit1%253DK.%26rft.volume%253D328%26rft.issue%253D5976%26rft.spage%253D319%26rft.epage%253D320%26rft.atitle%253DThe%2BFuture%2Bof%2BMetals%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1185866%26rft_id%253Dinfo%253Apmid%252F20395503%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMjgvNTk3Ni8zMTkiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1Ny84NTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [17]: #xref-ref-2-1 "View reference 2 in text" [18]: {openurl}?query=rft.jtitle%253DNature%2Bmaterials%26rft.stitle%253DNat%2BMater%26rft.aulast%253DRitchie%26rft.auinit1%253DR.%2BO.%26rft.volume%253D10%26rft.issue%253D11%26rft.spage%253D817%26rft.epage%253D822%26rft.atitle%253DThe%2Bconflicts%2Bbetween%2Bstrength%2Band%2Btoughness.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnmat3115%26rft_id%253Dinfo%253Apmid%252F22020005%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/external-ref?access_num=10.1038/nmat3115&link_type=DOI [20]: /lookup/external-ref?access_num=22020005&link_type=MED&atom=%2Fsci%2F373%2F6557%2F857.atom [21]: #xref-ref-3-1 "View reference 3 in text" [22]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DShi%26rft.auinit1%253DP.%26rft.volume%253D373%26rft.issue%253D6557%26rft.spage%253D912%26rft.epage%253D918%26rft.atitle%253DHierarchical%2Bcrack%2Bbuffering%2Btriples%2Bductility%2Bin%2Beutectic%2Bherringbone%2Bhigh-entropy%2Balloys%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abf6986%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzMvNjU1Ny85MTIiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1Ny84NTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [24]: #xref-ref-4-1 "View reference 4 in text" [25]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLu%26rft.auinit1%253DK.%26rft.volume%253D324%26rft.issue%253D5925%26rft.spage%253D349%26rft.epage%253D352%26rft.atitle%253DStrengthening%2BMaterials%2Bby%2BEngineering%2BCoherent%2BInternal%2BBoundaries%2Bat%2Bthe%2BNanoscale%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1159610%26rft_id%253Dinfo%253Apmid%252F19372422%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMjQvNTkyNS8zNDkiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1Ny84NTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [27]: #xref-ref-5-1 "View reference 5 in text" [28]: {openurl}?query=rft.jtitle%253DProg.%2BMater.%2BSci.%26rft.volume%253D88%26rft.spage%253D467%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.pmatsci.2017.04.013%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=10.1016/j.pmatsci.2017.04.013&link_type=DOI [30]: #xref-ref-6-1 "View reference 6 in text" [31]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1200177%26rft_id%253Dinfo%253Apmid%252F21330487%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMzEvNjAyNC8xNTg3IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzczLzY1NTcvODU3LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [33]: #xref-ref-7-1 "View reference 7 in text" [34]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1324069111%26rft_id%253Dinfo%253Apmid%252F24799688%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTExLzIwLzcxOTciO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1Ny84NTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [36]: #xref-ref-8-1 "View reference 8 in text" [37]: {openurl}?query=rft.jtitle%253DNat.%2BRev.%2BMater.%26rft.volume%253D4%26rft.spage%253D515%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41578-019-0121-4%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: /lookup/external-ref?access_num=10.1038/s41578-019-0121-4&link_type=DOI [39]: #xref-ref-9-1 "View reference 9 in text" [40]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DYang%26rft.auinit1%253DT.%26rft.volume%253D362%26rft.issue%253D6417%26rft.spage%253D933%26rft.epage%253D937%26rft.atitle%253DMulticomponent%2Bintermetallic%2Bnanoparticles%2Band%2Bsuperb%2Bmechanical%2Bbehaviors%2Bof%2Bcomplex%2Balloys%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aas8815%26rft_id%253Dinfo%253Apmid%252F30467166%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjIvNjQxNy85MzMiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzMvNjU1Ny84NTcuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [42]: #xref-ref-10-1 "View reference 10 in text" [43]: {openurl}?query=rft.jtitle%253DJ.%2BMater.%2BSci.%2BTechnol.%26rft.volume%253D82%26rft.spage%253D10%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: #xref-ref-11-1 "View reference 11 in text" [45]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DCheng%26rft.auinit1%253DZ.%26rft.volume%253D362%26rft.issue%253D6414%26rft.spage%253Deaau1925%26rft.epage%253Deaau1925%26rft.atitle%253DExtra%2Bstrengthening%2Band%2Bwork%2Bhardening%2Bin%2Bgradient%2Bnanotwinned%2Bmetals%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aau1925%26rft_id%253Dinfo%253Apmid%252F30385547%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [46]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjE3OiIzNjIvNjQxNC9lYWF1MTkyNSI7czo0OiJhdG9tIjtzOjIyOiIvc2NpLzM3My82NTU3Lzg1Ny5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [47]: #xref-ref-12-1 "View reference 12 in text" [48]: {openurl}?query=rft.jtitle%253DProg.%2BMater.%2BSci.%26rft.volume%253D101%26rft.spage%253D1%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/336023
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Xianghai An. Structural hierarchy defeats alloy cracking[J]. Science,2021.
APA Xianghai An.(2021).Structural hierarchy defeats alloy cracking.Science.
MLA Xianghai An."Structural hierarchy defeats alloy cracking".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xianghai An]的文章
百度学术
百度学术中相似的文章
[Xianghai An]的文章
必应学术
必应学术中相似的文章
[Xianghai An]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。