GSTDTAP  > 气候变化
DOI10.1002/2017JD028052
Time Series Forecasting of Air Quality Based On Regional Numerical Modeling in Hong Kong
Liu, Tong1; Lau, Alexis K. H.1,2; Sandbrink, Kai3; Fung, Jimmy C. H.1,4
2018-04-27
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:8页码:4175-4196
文章类型Article
语种英语
国家Peoples R China; Switzerland
英文摘要

Based on prevailing numerical forecasting models (Community Multiscale Air Quality [CMAQ] model , Comprehensive Air Quality Model with Extensions, and Nested Air Quality Prediction Modeling System) and observations from monitoring stations in Hong Kong, we employ a set of autoregressive integrated moving average (ARIMA) models with numerical forecasts (ARIMAX) to improve the forecast of air pollutants including PM2.5, NO2, and O-3. The results show significant improvements in multiple evaluation metrics for daily (1-3days) and hourly (1-72hr) forecast. Forecasts on daily 1-hr and 8-hr maximum O-3 are also improved. For instance, compared with CMAQ, applying CMAQ-ARIMA reduces average root-mean-square errors (RMSEs) at all stations for daily average PM2.5, NO2, and O-3 in the next 3days by 14.3-21.0%, 41.2-46.3%, and 47.8-49.7%, respectively. For hourly forecasts in the next 72hr, reductions in RMSEs brought by ARIMAX using CMAQ are 18.2% for PM2.5, 32.1% for NO2, and 36.7% for O-3. Large improvements in RMSEs are achieved for nonrural PM2.5 and rural NO2 using ARIMAX with three numerical models. Dynamic hourly forecast shows that ARIMAX can be applied for forecast of 7- to 72-hr PM2.5, 4- to 72-hr NO2, and 4- to 6-hr O-3. Besides applying ARIMAX for NO2, we recommend a mixed forecast strategy to ARIMAX for normal values of PM2.5 and O-3 and employ numerical models for outputs above 75th percentile of historical observations. Our hybrid ARIMAX method can combine the advantage of ARIMA and numerical modeling to assist real-time air quality forecasting efficiently and consistently.


英文关键词air quality forecast numerical model stochastic model time series ARIMA
领域气候变化
收录类别SCI-E ; SSCI
WOS记录号WOS:000433071200021
WOS关键词PEARL RIVER DELTA ; POTENTIAL ASSESSMENT ; EMISSION INVENTORY ; STOCHASTIC-MODELS ; URBAN ; PERFORMANCE ; REGRESSION ; PREDICTION ; TRANSPORT ; POLLUTION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/33706
专题气候变化
作者单位1.Hong Kong Univ Sci & Technol, Div Environm & Sustainabil, Hong Kong, Hong Kong, Peoples R China;
2.Hong Kong Univ Sci & Technol, Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China;
3.Swiss Fed Inst Technol, Inst Neuroinformat, Zurich, Switzerland;
4.Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Liu, Tong,Lau, Alexis K. H.,Sandbrink, Kai,et al. Time Series Forecasting of Air Quality Based On Regional Numerical Modeling in Hong Kong[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(8):4175-4196.
APA Liu, Tong,Lau, Alexis K. H.,Sandbrink, Kai,&Fung, Jimmy C. H..(2018).Time Series Forecasting of Air Quality Based On Regional Numerical Modeling in Hong Kong.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(8),4175-4196.
MLA Liu, Tong,et al."Time Series Forecasting of Air Quality Based On Regional Numerical Modeling in Hong Kong".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.8(2018):4175-4196.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Tong]的文章
[Lau, Alexis K. H.]的文章
[Sandbrink, Kai]的文章
百度学术
百度学术中相似的文章
[Liu, Tong]的文章
[Lau, Alexis K. H.]的文章
[Sandbrink, Kai]的文章
必应学术
必应学术中相似的文章
[Liu, Tong]的文章
[Lau, Alexis K. H.]的文章
[Sandbrink, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。