Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2021GL092607 |
Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults? | |
David Blank; Julia Morgan | |
2021-09-08 | |
发表期刊 | Geophysical Research Letters
![]() |
出版年 | 2021 |
英文摘要 | We propose a binary classification model rooted in state-of-the-art deep learning techniques to predict whether or not complete-interface rupture is imminent along a numerical megathrust fault. The models are trained on labeled 2D space-time input features taken from the synthetic fault system. We contrast the performance of two neural networks trained on three types of data, to determine the relative predictive power of each. The neural networks are able to discriminate imminent complete rupture precursors from everything else, thus providing a relative size and time forecast. Vertical displacements along the fault demonstrate relatively good predictive power. The results confirm previous qualitative observations that precursory deformation scales with upcoming event size, consistent with the preslip model for earthquake nucleation. The methods we propose are adaptable and can be modified to use 3D data in the future. |
领域 | 气候变化 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/337546 |
专题 | 气候变化 |
推荐引用方式 GB/T 7714 | David Blank,Julia Morgan. Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?[J]. Geophysical Research Letters,2021. |
APA | David Blank,&Julia Morgan.(2021).Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?.Geophysical Research Letters. |
MLA | David Blank,et al."Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?".Geophysical Research Letters (2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[David Blank]的文章 |
[Julia Morgan]的文章 |
百度学术 |
百度学术中相似的文章 |
[David Blank]的文章 |
[Julia Morgan]的文章 |
必应学术 |
必应学术中相似的文章 |
[David Blank]的文章 |
[Julia Morgan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论