GSTDTAP  > 气候变化
DOI10.1029/2021GL092607
Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?
David Blank; Julia Morgan
2021-09-08
发表期刊Geophysical Research Letters
出版年2021
英文摘要

We propose a binary classification model rooted in state-of-the-art deep learning techniques to predict whether or not complete-interface rupture is imminent along a numerical megathrust fault. The models are trained on labeled 2D space-time input features taken from the synthetic fault system. We contrast the performance of two neural networks trained on three types of data, to determine the relative predictive power of each. The neural networks are able to discriminate imminent complete rupture precursors from everything else, thus providing a relative size and time forecast. Vertical displacements along the fault demonstrate relatively good predictive power. The results confirm previous qualitative observations that precursory deformation scales with upcoming event size, consistent with the preslip model for earthquake nucleation. The methods we propose are adaptable and can be modified to use 3D data in the future.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/337546
专题气候变化
推荐引用方式
GB/T 7714
David Blank,Julia Morgan. Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?[J]. Geophysical Research Letters,2021.
APA David Blank,&Julia Morgan.(2021).Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?.Geophysical Research Letters.
MLA David Blank,et al."Can Deep Learning Predict Complete Ruptures in Numerical Megathrust Faults?".Geophysical Research Letters (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[David Blank]的文章
[Julia Morgan]的文章
百度学术
百度学术中相似的文章
[David Blank]的文章
[Julia Morgan]的文章
必应学术
必应学术中相似的文章
[David Blank]的文章
[Julia Morgan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。