GSTDTAP  > 气候变化
DOI10.1029/2018JD028447
Evaluating Diffferent Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale
Xu, Tongren1; Guo, Zhixia1; Liu, Shaomin1; He, Xinlei1; Meng, Yangfanyu1; Xu, Ziwei1; Xia, Youlong2; Xiao, Jingfeng3; Zhang, Yuan1; Ma, Yanfei4; Song, Lisheng5
2018-08-27
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:16页码:8674-8690
文章类型Article
语种英语
国家Peoples R China; USA
英文摘要

Evapotranspiration (ET) is a vital variable for land-atmosphere interactions that links surface energy balance, water, and carbon cycles. The in situ techniques can measure ET accurately but the observations have limited spatial and temporal coverage. Modeling approaches have been used to estimate ET at broad spatial and temporal scales, while accurately simulating ET at regional scales remains a major challenge. In this study, we upscale ET from eddy covariance flux tower sites to the regional scale with machine learning algorithms. Five machine learning algorithms are employed for ET upscaling including artificial neural network, Cubist, deep belief network, random forest, and support vector machine. The machine learning methods are trained and tested at 36 flux towers sites (65 site years) across the Heihe River Basin and are then applied to estimate ET for each grid cell (1 km x 1 km) within the watershed and for each day over the period 2012-2016. The artificial neural network, Cubist, random forest, and support vector machine algorithms have almost identical performance in estimating ET and have slightly lower root-mean-square error than deep belief network at the site scale. The random forest algorithm has slightly lower relative uncertainty at the regional scale than other methods based on three-cornered hat method. Additionally, the machine learning methods perform better over densely vegetated conditions than barren land or sparsely vegetated conditions. The regional ET generated from the machine learning approaches captured the spatial and temporal patterns of ET at the regional scale.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000445331900018
WOS关键词CONTERMINOUS UNITED-STATES ; ENVIRONMENTAL RESPONSE FUNCTIONS ; LAND-SURFACE TEMPERATURE ; LATENT-HEAT FLUX ; EDDY-COVARIANCE ; AMERIFLUX DATA ; COMBINING MODIS ; SOIL-MOISTURE ; CHINA ; BALANCE
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/33759
专题气候变化
作者单位1.Beijing Normal Univ, Sch Nat Resources, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China;
2.NCEP, IM Syst Grp, EMC, College Pk, MD USA;
3.Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA;
4.Handan Coll, Dept Geog, Handan, Peoples R China;
5.Southwest Univ, Sch Geog Sci, Chongqing, Peoples R China
推荐引用方式
GB/T 7714
Xu, Tongren,Guo, Zhixia,Liu, Shaomin,et al. Evaluating Diffferent Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(16):8674-8690.
APA Xu, Tongren.,Guo, Zhixia.,Liu, Shaomin.,He, Xinlei.,Meng, Yangfanyu.,...&Song, Lisheng.(2018).Evaluating Diffferent Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(16),8674-8690.
MLA Xu, Tongren,et al."Evaluating Diffferent Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.16(2018):8674-8690.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Tongren]的文章
[Guo, Zhixia]的文章
[Liu, Shaomin]的文章
百度学术
百度学术中相似的文章
[Xu, Tongren]的文章
[Guo, Zhixia]的文章
[Liu, Shaomin]的文章
必应学术
必应学术中相似的文章
[Xu, Tongren]的文章
[Guo, Zhixia]的文章
[Liu, Shaomin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。