GSTDTAP  > 气候变化
DOI10.1029/2017JD027958
Large-Scale Drivers and Seasonal Predictability of Extreme Wind Speeds Over the North Atlantic and Europe
Walz, Michael A.1,2,3; Donat, Markus G.2,3,4; Leckebusch, Gregor C.1
2018-10-27
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2018
卷号123期号:20页码:11518-11535
文章类型Article
语种英语
国家England; Australia; Spain
英文摘要

As extreme wind speeds are responsible for large socioeconomic losses in the European domain, a skillful prediction would be of great benefit for disaster prevention as well as the actuarial community. Here we evaluate the patterns of atmospheric variability and the seasonal predictability of extreme wind speeds (e.g., >95th percentile) in the European domain in the dynamical seasonal forecast system European Centre for Medium-Range Weather Forecasts (ECMWF) System 4 and compare to the predictability using a statistical prediction model. Further we compare the seasonal forecast system with ECMWF Re-Analysis (ERA)-Interim in order to advance the understanding of the large-scale conditions that generate extreme winds. The dominant mean sea level pressure patterns of atmospheric variability show distinct differences between reanalysis and System 4 as most patterns in System 4 are extended downstream in comparison to ERA-Interim. This dissimilar manifestation of the patterns across the two models leads to substantially different drivers associated with the generation of extreme winds: While the prominent pattern of the North Atlantic Oscillation could be identified as the main driver in the reanalysis, extreme winds in System 4 appear to be related to different large-scale atmospheric pressure patterns. Thus, our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world. This circumstance is likely related to the unrealistic representation of the atmospheric patterns driving these extreme winds. Hence, our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric variability.


领域气候变化
收录类别SCI-E
WOS记录号WOS:000452000300015
WOS关键词INFORMATION-THEORY ; STORM TRACK ; CLIMATE ; PREDICTION ; FORECASTS ; ENSEMBLE ; SKILL ; OSCILLATION ; VARIABILITY ; NAO
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/33931
专题气候变化
作者单位1.Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham, W Midlands, England;
2.Univ New South Wales, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia;
3.Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia;
4.Barcelona Supercomp Ctr, Barcelona, Spain
推荐引用方式
GB/T 7714
Walz, Michael A.,Donat, Markus G.,Leckebusch, Gregor C.. Large-Scale Drivers and Seasonal Predictability of Extreme Wind Speeds Over the North Atlantic and Europe[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2018,123(20):11518-11535.
APA Walz, Michael A.,Donat, Markus G.,&Leckebusch, Gregor C..(2018).Large-Scale Drivers and Seasonal Predictability of Extreme Wind Speeds Over the North Atlantic and Europe.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,123(20),11518-11535.
MLA Walz, Michael A.,et al."Large-Scale Drivers and Seasonal Predictability of Extreme Wind Speeds Over the North Atlantic and Europe".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 123.20(2018):11518-11535.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Walz, Michael A.]的文章
[Donat, Markus G.]的文章
[Leckebusch, Gregor C.]的文章
百度学术
百度学术中相似的文章
[Walz, Michael A.]的文章
[Donat, Markus G.]的文章
[Leckebusch, Gregor C.]的文章
必应学术
必应学术中相似的文章
[Walz, Michael A.]的文章
[Donat, Markus G.]的文章
[Leckebusch, Gregor C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。