GSTDTAP  > 气候变化
DOI10.1029/2021GL093531
Deep Residual Convolutional Neural Network Combining Dropout and Transfer Learning for ENSO Forecasting
Jie Hu; Bin Weng; Tianqiang Huang; Jianyun Gao; Feng Ye; Lijun You
2021-11-24
发表期刊Geophysical Research Letters
出版年2021
英文摘要

To improve EI Niño-Southern Oscillation (ENSO) amplitude and type forecast, we propose a model based on a deep residual convolutional neural network with few parameters. We leverage dropout and transfer learning to overcome the challenge of insufficient data in model training process. By applying the dropout technique, the model effectively predicts the Niño3.4 Index at a lead time of 20 months during the 1984-2017 evaluation period, which is three more months than that by the existing optimal model. Moreover, with homogeneous transfer learning this model precisely predicts the Oceanic Niño Index up to 18 months in advance. Using heterogeneous transfer learning this model achieved 83.3% accuracy for forecasting the 12-month-lead EI Niño type. These results suggest that our proposed model can enhance the ENSO prediction performance.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/342416
专题气候变化
推荐引用方式
GB/T 7714
Jie Hu,Bin Weng,Tianqiang Huang,et al. Deep Residual Convolutional Neural Network Combining Dropout and Transfer Learning for ENSO Forecasting[J]. Geophysical Research Letters,2021.
APA Jie Hu,Bin Weng,Tianqiang Huang,Jianyun Gao,Feng Ye,&Lijun You.(2021).Deep Residual Convolutional Neural Network Combining Dropout and Transfer Learning for ENSO Forecasting.Geophysical Research Letters.
MLA Jie Hu,et al."Deep Residual Convolutional Neural Network Combining Dropout and Transfer Learning for ENSO Forecasting".Geophysical Research Letters (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jie Hu]的文章
[Bin Weng]的文章
[Tianqiang Huang]的文章
百度学术
百度学术中相似的文章
[Jie Hu]的文章
[Bin Weng]的文章
[Tianqiang Huang]的文章
必应学术
必应学术中相似的文章
[Jie Hu]的文章
[Bin Weng]的文章
[Tianqiang Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。