GSTDTAP  > 气候变化
DOI10.1002/2016JD026308
Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments
Li, Jing1; Li, Xichen2; Carlson, Barbara E.3; Kahn, Ralph A.4; Lacis, Andrew A.3; Dubovik, Oleg5; Nakajima, Teruyuki6
2017-04-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2017
卷号122期号:7
文章类型Article
语种英语
国家Peoples R China; USA; France; Japan
英文摘要

Surface remote sensing of aerosol properties provides ground truth for satellite and model validation and is an important component of aerosol observation system. Due to the different characteristics of background aerosol variability, information obtained at different locations usually has different spatial representativeness, implying that the location should be carefully chosen so that its measurement could be extended to a greater area. In this study, we present an objective observation array design technique that automatically determines the optimal locations with the highest spatial representativeness based on the Ensemble Kalman Filter (EnKF) theory. The ensemble is constructed using aerosol optical depth (AOD) products from five satellite sensors. The optimal locations are solved sequentially by minimizing the total analysis error variance, which means that observations at these locations will reduce the background error variance to the largest extent. The location determined by the algorithm is further verified to have larger spatial representativeness than some other arbitrary location. In addition to the existing active Aerosol Robotic Network (AERONET) sites, the 40 selected optimal locations are mostly concentrated on regions with both high AOD inhomogeneity and its spatial representativeness, namely, the Sahel, South Africa, East Asia, and North Pacific Islands. These places should be the focuses of establishing future AERONET sites in order to further reduce the uncertainty in the monthly mean AOD. Observations at these locations contribute to approximately 50% of the total background uncertainty reduction.


英文关键词multisensor aerosol optical depth optimal location ground observation deployment Ensemble Kalman Filter
领域气候变化
收录类别SCI-E
WOS记录号WOS:000400172000013
WOS关键词KALMAN FILTER ; AERONET ; VALIDATION ; PRODUCTS ; NETWORK ; MODELS ; MODIS ; LAND
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/34386
专题气候变化
作者单位1.Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Beijing, Peoples R China;
2.Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China;
3.NASA Goddard Inst Space Studies, New York, NY USA;
4.NASA Goddard Space Flight Ctr, Greenbelt, MD USA;
5.Univ Lille 1, French Natl Ctr Sci Res, Villeneuve Dascq, France;
6.Japan Aerosp Explorat Agcy, Tsukuba Space Ctr, Tsukuba, Ibaraki, Japan
推荐引用方式
GB/T 7714
Li, Jing,Li, Xichen,Carlson, Barbara E.,et al. Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2017,122(7).
APA Li, Jing.,Li, Xichen.,Carlson, Barbara E..,Kahn, Ralph A..,Lacis, Andrew A..,...&Nakajima, Teruyuki.(2017).Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,122(7).
MLA Li, Jing,et al."Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 122.7(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Jing]的文章
[Li, Xichen]的文章
[Carlson, Barbara E.]的文章
百度学术
百度学术中相似的文章
[Li, Jing]的文章
[Li, Xichen]的文章
[Carlson, Barbara E.]的文章
必应学术
必应学术中相似的文章
[Li, Jing]的文章
[Li, Xichen]的文章
[Carlson, Barbara E.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。