GSTDTAP  > 资源环境科学
DOI10.1029/2021WR031603
Quantifying the uncertainty created by non-transferable model calibrations across climate and land cover scenarios: A case study with SWMM
Anneliese Sytsma; Octavia Crompton; Chelsea Panos; Sally Thompson; G. Mathias Kondolf
2022-02-03
发表期刊Water Resources Research
出版年2022
英文摘要

Predictions of urban runoff are heavily reliant on semi-distributed models, which simulate runoff at subcatchment scales. These models often use ‘effective’ model parameters that average across the small-scale heterogeneity. Here we quantify the error in model prediction that arises when the optimal calibrated value of effective parameters changes with model forcing. The uncertainty this produces, which we refer to as ‘calibration parameter transfer uncertainty’, can undermine the usefulness of important applications of urban hydrologic models, for example to predict the hydrologic response to novel climate or development scenarios. Using the urban hydrologic model SWMM (“Stormwater Management Model”) as a case study, we quantify the transferability of two calibrated effective parameters: subcatchment ‘width’ and ‘connected impervious area’. Through numerical experiments, we simulate overland flow across a highly simplified synthetic urban landscape subject to a range of scenarios (combinations of storm events, soil types, and impervious areas). For each scenario, we calibrate SWMM ‘width’ and ‘connected impervious area’ parameters to the outcomes of a distributed model. We find that the calibrated values of these parameters vary with soil, storm, and land cover forcing. This variation across forcing parameters can result in prediction errors up to a magnitude of 60% when a calibrated SWMM model is used to predict runoff following changes in climate and land cover. Such calibration transfer uncertainty is largely unaccounted for in urban hydrologic modeling. These results point to a need for additional research to determine how to use urban hydrologic models to make robust predictions across future conditions.

This article is protected by copyright. All rights reserved.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/346096
专题资源环境科学
推荐引用方式
GB/T 7714
Anneliese Sytsma,Octavia Crompton,Chelsea Panos,et al. Quantifying the uncertainty created by non-transferable model calibrations across climate and land cover scenarios: A case study with SWMM[J]. Water Resources Research,2022.
APA Anneliese Sytsma,Octavia Crompton,Chelsea Panos,Sally Thompson,&G. Mathias Kondolf.(2022).Quantifying the uncertainty created by non-transferable model calibrations across climate and land cover scenarios: A case study with SWMM.Water Resources Research.
MLA Anneliese Sytsma,et al."Quantifying the uncertainty created by non-transferable model calibrations across climate and land cover scenarios: A case study with SWMM".Water Resources Research (2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anneliese Sytsma]的文章
[Octavia Crompton]的文章
[Chelsea Panos]的文章
百度学术
百度学术中相似的文章
[Anneliese Sytsma]的文章
[Octavia Crompton]的文章
[Chelsea Panos]的文章
必应学术
必应学术中相似的文章
[Anneliese Sytsma]的文章
[Octavia Crompton]的文章
[Chelsea Panos]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。