GSTDTAP  > 地球科学
DOI10.5194/acp-22-7489-2022
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
2022-06-10
发表期刊Atmospheric Chemistry and Physics
出版年2022
英文摘要

Biomass burning (BB) is a significant source of dicarboxylic acids (diacids) and related compounds that play important roles in atmospheric chemistry and climate change. In this study, a combustion chamber and oxidation flow reactor were used to generate fresh and aged aerosols from burned rice, maize and wheat straw to investigate atmospheric aging and the stable carbon isotopic (δ13C) composition of these emissions. Succinic acid (C4) was the most abundant species in fresh samples, while oxalic acid (C2) became dominant after atmospheric aging. Of all diacids, C2 had the highest aged to fresh emission ratios (A/F), suggesting that C2 is largely produced through secondary photochemical processes. Compared with fresh samples, the emission factors of ketocarboxylic acids and α-dicarbonyls increased after 2 d but decreased after 7 d aging, indicating a short residence time and further atmospheric degradation from 2 to 7 d. The δ13C values of C2 for aged biomass samples were higher than those of urban aerosols but lower than marine or mountain aerosols, and the δ13C values of C2 became isotopically heavier during aging. Relationships between the reduction in volatile organic compounds (VOCs), such as toluene, benzene and isoprene, and increase in diacids after 2 d aging indicate that these VOCs led to the formation of diacids. However, no significant correlation was found between decreases in VOCs and increases in 7 d aged diacids. In addition, the A/F of C2 was 50.8 at 2 d and 64.5 at 7 d, indicating that the conversion of VOCs to C2 was almost completed within 2 d. For the longer aging times, the particulate-phase compounds may undergo further degradation in the oxidation processes.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/351791
专题地球科学
推荐引用方式
GB/T 7714
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li. Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols[J]. Atmospheric Chemistry and Physics,2022.
APA Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li.(2022).Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols.Atmospheric Chemistry and Physics.
MLA Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li."Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols".Atmospheric Chemistry and Physics (2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li]的文章
百度学术
百度学术中相似的文章
[Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li]的文章
必应学术
必应学术中相似的文章
[Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。