GSTDTAP  > 地球科学
DOI10.5194/acp-22-8221-2022
Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu
2022-06-24
发表期刊Atmospheric Chemistry and Physics
出版年2022
英文摘要

Stratospheric ozone transported to the troposphere is estimated to account for 5 %–15 % of the tropospheric ozone sources. However, the chances of intruded stratospheric ozone reaching the surface are low. Here, we report an event of a strong surface ozone surge of stratospheric origin in the North China Plain (NCP, 34–40 N, 114–121 E) during the night of 31 July 2021. The hourly measurements reveal surface ozone concentrations of up to 80–90 ppbv at several cities over the NCP from 23:00 LST (Local Standard time, = UTC +8 h) on 31 July to 06:00 LST on 1 August 2021. The ozone enhancement was 40–50 ppbv higher than the corresponding monthly mean. A high-frequency surface measurement indicates that this ozone surge occurred abruptly, with an increase reaching 40–50 ppbv within 10 min. A concurrent decline in surface carbon monoxide (CO) concentrations suggests that this surface ozone surge might have resulted from the downward transport of a stratospheric ozone-rich and CO-poor air mass. This is further confirmed by the vertical evolutions of humidity and ozone profiles based on radiosonde and satellite data respectively. Such an event of stratospheric impact on surface ozone is rarely documented in view of its magnitude, coverage, and duration.

We find that this surface ozone surge was induced by a combined effect of dying Typhoon In-fa and shallow local mesoscale convective systems (MCSs) that facilitated transport of stratospheric ozone to the surface. This finding is based on analysis of meteorological reanalysis and radiosonde data, combined with high-resolution Weather Research and Forecasting (WRF) simulation and backward trajectory analysis using the FLEXible PARTicle (FLEXPART) particle dispersion model. Although Typhoon In-fa on the synoptic scale was at its dissipation stage when it passed through the NCP, it could still bring down a stratospheric dry and ozone-rich air mass. As a result, the stratospheric air mass descended to the middle-to-low troposphere over the NCP before the MCSs formed. With the pre-existing stratospheric air mass, the convective downdrafts of the MCSs facilitated the final descent of stratospheric air mass to the surface. Significant surface ozone enhancement occurred in the convective downdraft regions during the development and propagation of the MCSs. This study underscores the substantial roles of weak convection in transporting stratospheric ozone to the lower troposphere and even to the surface, which has important implications for air quality and climate change.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/352951
专题地球科学
推荐引用方式
GB/T 7714
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu. Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection[J]. Atmospheric Chemistry and Physics,2022.
APA Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu.(2022).Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection.Atmospheric Chemistry and Physics.
MLA Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu."Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection".Atmospheric Chemistry and Physics (2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu]的文章
百度学术
百度学术中相似的文章
[Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu]的文章
必应学术
必应学术中相似的文章
[Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。