Global S&T Development Trend Analysis Platform of Resources and Environment
| DOI | 10.1007/s00382-017-3983-4 |
| Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites | |
| Grachev, Andrey A.1,2; Persson, P. Ola G.1,2; Uttal, Taneil1; Akish, Elena A.1,3; Cox, Christopher J.1,2; Morris, Sara M.1,2; Fairall, Christopher W.1; Stone, Robert S.1,3; Lesins, Glen4; Makshtas, Alexander P.5; Repina, Irina A.6 | |
| 2018-09-01 | |
| 发表期刊 | CLIMATE DYNAMICS
![]() |
| ISSN | 0930-7575 |
| EISSN | 1432-0894 |
| 出版年 | 2018 |
| 卷号 | 51页码:1793-1818 |
| 文章类型 | Article |
| 语种 | 英语 |
| 国家 | USA; Canada; Russia |
| 英文摘要 | This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0A degrees N and 71.6A degrees N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10A degrees north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures are sufficiently below freezing, the near-surface environment is generally stably stratified and the hourly averaged turbulent fluxes are quite small and irregular with on average small downward sensible heat fluxes and upward latent heat and carbon dioxide fluxes. The magnitude of the turbulent fluxes increases rapidly when surface snow disappears and the air temperatures rise above freezing during spring melt and eventually reaches a summer maximum. Throughout the summer months strong upward sensible and latent heat fluxes and downward carbon dioxide (uptake by the surface) are typically observed indicating persistent unstable (convective) stratification. Due to the combined effects of day length and solar zenith angle, the convective boundary layer forms in the High Arctic (e.g., in Eureka) and can reach long-lived quasi-stationary states in summer. During late summer and early autumn all turbulent fluxes rapidly decrease in magnitude when the air temperature decreases and falls below freezing. Unlike Eureka, a pronounced zero-curtain effect consisting of a sustained surface temperature hiatus at the freezing point is observed in Tiksi during fall due to wetter and/or water saturated soils. |
| 英文关键词 | Arctic Carbon dioxide Latitudinal variations Radiative fluxes Turbulent fluxes |
| 领域 | 气候变化 |
| 收录类别 | SCI-E |
| WOS记录号 | WOS:000442433200012 |
| WOS关键词 | STABLE BOUNDARY-LAYER ; WET SEDGE TUNDRA ; SPATIAL VARIABILITY ; CLIMATE-CHANGE ; CO2 EXCHANGE ; SIMILARITY THEORY ; CLOUD PROPERTIES ; CARBON-DIOXIDE ; WATER-VAPOR ; EUREKA |
| WOS类目 | Meteorology & Atmospheric Sciences |
| WOS研究方向 | Meteorology & Atmospheric Sciences |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/35885 |
| 专题 | 气候变化 |
| 作者单位 | 1.NOAA, Earth Syst Res Lab, 325 Broadway,R PSD3, Boulder, CO 80305 USA; 2.Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; 3.Sci & Technol Corp, Boulder, CO USA; 4.Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada; 5.Arctic & Antarctic Res Inst, St Petersburg, Russia; 6.Russian Acad Sci, AM Obukhov Inst Atmospher Phys, Moscow, Russia |
| 推荐引用方式 GB/T 7714 | Grachev, Andrey A.,Persson, P. Ola G.,Uttal, Taneil,et al. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites[J]. CLIMATE DYNAMICS,2018,51:1793-1818. |
| APA | Grachev, Andrey A..,Persson, P. Ola G..,Uttal, Taneil.,Akish, Elena A..,Cox, Christopher J..,...&Repina, Irina A..(2018).Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites.CLIMATE DYNAMICS,51,1793-1818. |
| MLA | Grachev, Andrey A.,et al."Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites".CLIMATE DYNAMICS 51(2018):1793-1818. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论