GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2017.04.017
Drought sensitivity mapping using two one-class support vector machine algorithms
Roodposhti, Majid Shadman1; Safarrad, Taher2; Shahabi, Himan3
2017-09-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2017
卷号193
文章类型Article
语种英语
国家Australia; Iran
英文摘要

This paper investigates the use of standardised precipitation index (SPI) and the enhanced vegetation index (EVI) as indicators of soil moisture. On the other hand, we attempted to produce a drought sensitivity map (DSM) for vegetation cover using two one-class support vector machine (OC-SVM) algorithms. In order to achieve promising results a combination of both 30 years statistical data (1978 to 2008) of synoptic stations and 10 years MODIS imagery archive (2001 to 2010) are used within the boundary of Kermanshah province, Iran. The synoptic data and MODIS imagery were used for extraction of SPI and EVI, respectively. The objective is, therefore, to explore meaningful changes of vegetation in response to drought anomalies, in the first step, and further extraction of reliable spatio-temporal patterns of drought sensitivity using efficient classification technique and spatial criteria, in the next step. To this end, four main criteria including elevation, slope, aspect and geomorphic classes are considered for DSM using two OC-SVM algorithms. Results of the analysis showed distinct spatio-temporal patterns of drought impacts on vegetation cover. The receiver operating characteristics (ROC) curves for the proposed DSM was used along with the simple overlay technique for accuracy assessment phase and the area under curve (AUC = 0.80) value was calculated.


英文关键词Drought sensitivity map (DSM) Enhanced vegetation index (EVI) Standardised precipitation index (SPI) One-class support vector machine (OC-SVM) Kermanshah
领域地球科学
收录类别SCI-E
WOS记录号WOS:000403995200007
WOS关键词LANDSLIDE SUSCEPTIBILITY ; SOIL-MOISTURE ; AGRICULTURAL DROUGHT ; RISK-ASSESSMENT ; INDEX ; CLASSIFICATION ; REGION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/38227
专题地球科学
作者单位1.Univ Tasmania, Discipline Geog & Spatial Sci, Sch Land & Food, Hobart, Tas, Australia;
2.Univ Mazandaran, Dept Geog & Urban Planning, Fac Humanities & Social Sci, Babol Sar, Iran;
3.Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj, Iran
推荐引用方式
GB/T 7714
Roodposhti, Majid Shadman,Safarrad, Taher,Shahabi, Himan. Drought sensitivity mapping using two one-class support vector machine algorithms[J]. ATMOSPHERIC RESEARCH,2017,193.
APA Roodposhti, Majid Shadman,Safarrad, Taher,&Shahabi, Himan.(2017).Drought sensitivity mapping using two one-class support vector machine algorithms.ATMOSPHERIC RESEARCH,193.
MLA Roodposhti, Majid Shadman,et al."Drought sensitivity mapping using two one-class support vector machine algorithms".ATMOSPHERIC RESEARCH 193(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Roodposhti, Majid Shadman]的文章
[Safarrad, Taher]的文章
[Shahabi, Himan]的文章
百度学术
百度学术中相似的文章
[Roodposhti, Majid Shadman]的文章
[Safarrad, Taher]的文章
[Shahabi, Himan]的文章
必应学术
必应学术中相似的文章
[Roodposhti, Majid Shadman]的文章
[Safarrad, Taher]的文章
[Shahabi, Himan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。