GSTDTAP  > 气候变化
DOI10.3354/cr01463
Optically excited structural transition in atomic wires on surfaces at the quantum limit
Frigge, T.1,2; Hafke, B.1,2; Witte, T.1,2; Krenzer, B.1,2; Streubuehr, C.1,2; Syed, A. Samad1,2; Trontl, V. Miksic1,2; Avigo, I.1,2; Zhou, P.1,2; Ligges, M.1,2; von der Linde, D.1,2; Bovensiepen, U.1,2; Horn-von Hoegen, M.1,2; Wippermann, S.3; Luecke, A.4; Gerstmann, U.4; Schmidt, W. G.4
2017-04-13
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2017
卷号544期号:7649页码:207-+
文章类型Article
语种英语
国家Germany
英文摘要

Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques(1) combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds(2-6). In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer(7-9). This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low-to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic)(8). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors(10,11).


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000398897900032
WOS关键词CHARGE-DENSITY-WAVE ; ULTRAFAST ELECTRON CRYSTALLOGRAPHY ; DIFFRACTION ; PHASE ; MOTIONS
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/38581
专题气候变化
作者单位1.Univ Duisburg Essen, Fak Phys, Lotharstr 1, D-47057 Duisburg, Germany;
2.Univ Duisburg Essen, Ctr Nanointegrat CENIDE, Lotharstr 1, D-47057 Duisburg, Germany;
3.Max Planck Inst Eisenforschung, Max Planck Str 1, D-40237 Dusseldorf, Germany;
4.Univ Paderborn, Lehrstuhl Theoret Mat Phys, D-33095 Paderborn, Germany
推荐引用方式
GB/T 7714
Frigge, T.,Hafke, B.,Witte, T.,et al. Optically excited structural transition in atomic wires on surfaces at the quantum limit[J]. NATURE,2017,544(7649):207-+.
APA Frigge, T..,Hafke, B..,Witte, T..,Krenzer, B..,Streubuehr, C..,...&Schmidt, W. G..(2017).Optically excited structural transition in atomic wires on surfaces at the quantum limit.NATURE,544(7649),207-+.
MLA Frigge, T.,et al."Optically excited structural transition in atomic wires on surfaces at the quantum limit".NATURE 544.7649(2017):207-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Frigge, T.]的文章
[Hafke, B.]的文章
[Witte, T.]的文章
百度学术
百度学术中相似的文章
[Frigge, T.]的文章
[Hafke, B.]的文章
[Witte, T.]的文章
必应学术
必应学术中相似的文章
[Frigge, T.]的文章
[Hafke, B.]的文章
[Witte, T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。