GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2017.10.009
Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting
Luo, Hongyuan1; Wang, Deyun1,2; Yue, Chenqiang1; Liu, Yanling1; Guo, Haixiang1,2
2018-03-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2018
卷号201页码:34-45
文章类型Article
语种英语
国家Peoples R China
英文摘要

In this paper,, a hybrid decomposition-ensemble learning paradigm combining error correction is proposed for improving the forecast accuracy of daily PM10, concentration. The proposed learning paradigm is consisted of the following two sub-models: (1) PM10 concentration forecasting model; (2) error correction model. In the proposed model, fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition (VMD) are applied to disassemble original PM10 concentration series and error sequence, respectively. The extreme learning machine (ELM) model optimized by cuckoo search (CS) algorithm is utilized to forecast the components generated by FEEMD and VMD. In order to prove the effectiveness and accuracy of the proposed model, two real world PM10 concentration series respectively collected from Beijing and Harbin located in China are adopted to conduct the empirical study. The results show that the proposed model performs remarkably better than all other considered models without error correction, which indicates the superior performance of the proposed model.


英文关键词Daily PM10 forecasting Error correction Fast ensemble empirical mode decomposition Variational mode decomposition Cuckoo search Extreme learning machine
领域地球科学
收录类别SCI-E
WOS记录号WOS:000418981500003
WOS关键词EMPIRICAL MODE DECOMPOSITION ; ARTIFICIAL NEURAL-NETWORKS ; CUCKOO SEARCH ALGORITHM ; WIND-SPEED ; PM2.5 CONCENTRATION ; OZONE LEVELS ; AIR-QUALITY ; PREDICTION ; REGRESSION ; MACHINE
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/38600
专题地球科学
作者单位1.China Univ Geosci, Sch Econ & Management, Wuhan 430074, Hubei, Peoples R China;
2.China Univ Geosci, Mineral Resource Strategy & Policy Res Ctr, Wuhan 430074, Hubei, Peoples R China
推荐引用方式
GB/T 7714
Luo, Hongyuan,Wang, Deyun,Yue, Chenqiang,et al. Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting[J]. ATMOSPHERIC RESEARCH,2018,201:34-45.
APA Luo, Hongyuan,Wang, Deyun,Yue, Chenqiang,Liu, Yanling,&Guo, Haixiang.(2018).Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting.ATMOSPHERIC RESEARCH,201,34-45.
MLA Luo, Hongyuan,et al."Research and application of a novel hybrid decomposition-ensemble learning paradigm with error correction for daily PM10 forecasting".ATMOSPHERIC RESEARCH 201(2018):34-45.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luo, Hongyuan]的文章
[Wang, Deyun]的文章
[Yue, Chenqiang]的文章
百度学术
百度学术中相似的文章
[Luo, Hongyuan]的文章
[Wang, Deyun]的文章
[Yue, Chenqiang]的文章
必应学术
必应学术中相似的文章
[Luo, Hongyuan]的文章
[Wang, Deyun]的文章
[Yue, Chenqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。