GSTDTAP  > 地球科学
DOI10.2172/1029876
报告编号PNNL-20757
来源IDOSTI ID: 1029876
Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report
Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard
2011-10-01
出版年2011
语种英语
国家美国
领域地球科学
英文摘要This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative environment that leverages technology and scientific expertise from DOE, Pacific Northwest National Laboratory, CH2M HILL Plateau Remediation Company, and the broad scientific research community. As project manager for the DVZ-AFRI, I have had the privilege this past year to team with creative, talented members of the scientific community nationwide to develop effective long-term solutions to address deep vadose zone contamination. This report highlights how the DVZ-AFRI project team is delivering results by achieving significant programmatic accomplishments, and developing and field-testing transformational technologies to address the nation's most pressing groundwater and vadose zone contamination problems.
英文关键词deep vadose zone contamination Deep Vadose Zone-Applied Field Research Initiative
URL查看原文
来源平台US Department of Energy (DOE)
引用统计
文献类型科技报告
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/5251
专题地球科学
推荐引用方式
GB/T 7714
Diefenderfer, Heida L.,Johnson, Gary E.,Sather, Nichole K.,et al. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report,2011.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Diefenderfer, Heida L.]的文章
[Johnson, Gary E.]的文章
[Sather, Nichole K.]的文章
百度学术
百度学术中相似的文章
[Diefenderfer, Heida L.]的文章
[Johnson, Gary E.]的文章
[Sather, Nichole K.]的文章
必应学术
必应学术中相似的文章
[Diefenderfer, Heida L.]的文章
[Johnson, Gary E.]的文章
[Sather, Nichole K.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。