GSTDTAP
项目编号1503155
Precipitation Mechanisms over Complex Terrain
Robert Houze
主持机构University of Washington
项目开始年2015
2015-05-01
项目结束日期2018-04-30
资助机构US-NSF
项目类别Continuing grant
项目经费237983(USD)
国家美国
语种英语
英文摘要The three major types of precipitating cloud systems in the atmosphere are deep convection, frontal systems, and tropical cyclones. This project examines how each is affected by the presence of mountains. The research will analyze existing datasets including those of several past National Science Foundation funded field campaigns.

Intellectual Merit:
Heavy precipitation and flooding in regions of complex terrain can be understood and anticipated by identifying key ingredients. This research identifies such ingredients associated with each of the three principal storm types. The ingredients for deep convection will be examined and identified by comparing behavior of heavy rain-producing convection over the Himalayas, Andes, Central Mountains of Taiwan, and the Sierra Madre Occidental of Mexico. These different venues provide a variety of synoptic and orographic settings so that the important ingredients for intense rainfall and flooding will be identified through comparison of the storms in these different regions. The parental synoptic conditions range from baroclinic waves dipping equatorward over Asia, to monsoonal conditions, to equatorial waves, and diurnal forcings. The ingredients for enhancement of precipitation when fronts cross mountain ranges will be examined for the coastal mountains of British Columbia to test the hypothesis that shear and thermally-induced turbulence enhance windward side precipitation. The ingredients associated with the passage of tropical cyclones over mountains will be studied by examining Hurricane Karl (2005) and Tropical Storm Dolly (2014) as they entered and crossed the Sierra Madre Oriental of Mexico. The roles of terrain-locked gravity waves and triggering of convection over the mountains will be examined as ingredients for modifying and prolonging the precipitation in the eyewalls and rainbands of tropical cyclones. Through studying these types of enhancement of precipitation by the major atmospheric precipitation systems as they pass over mountains and identifying key ingredients, this project will contribute to a more general understanding of the effects of mountains on precipitating clouds.

Broader Impacts:
This work will have the broader impact of laying groundwork for improved forecasting of heavy precipitation in regions of the earth most prone to flooding and disastrous societal impacts. Further, by better understanding how mountains affect storms, future studies may better anticipate how the patterns of occurrence of natural disasters might be altered in a changing climate. In addition, this project will optimize the use of past field campaign datasets and will contribute to training women and minorities for atmospheric sciences research.
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/67914
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Robert Houze.Precipitation Mechanisms over Complex Terrain.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Robert Houze]的文章
百度学术
百度学术中相似的文章
[Robert Houze]的文章
必应学术
必应学术中相似的文章
[Robert Houze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。