GSTDTAP
项目编号1520681
The nature of the Ediacaran to early Cambrian geomagnetic field
John Tarduno
主持机构University of Rochester
项目开始年2015
2015-08-01
项目结束日期2017-07-31
资助机构US-NSF
项目类别Standard Grant
项目经费295465(USD)
国家美国
语种英语
英文摘要The suggestion that the entire solid Earth rotated by 90 degrees, approximately 565 million years ago, and that this event sparked the explosion of life on the planet (when most existing animal phyla and classes first appeared), is one of the most controversial hypotheses in the geosciences. Ultimately, the veracity of this idea rests on how well the past geomagnetic field is recorded in ancient rock samples (the purview of the discipline of paleomagnetism). The PIs have developed a method for obtaining paleomagnetic data from geologic samples - known as the single silicate crystal approach - having higher fidelity than standard procedures. Preliminary data applying this method leads the team to an alternative hypothesis. Rather than recording a rotation of the entire solid Earth, the data reflect a geomagnetic field 565 million years ago that was in an unusual state: it was weak, and the poles reversed frequently. The team will test their hypothesis through a single silicate crystal paleomagnetic study of samples from three areas of southern Canada. Because the strength of the geomagnetic field is a principal factor defining shielding of the planet from the solar wind, this study will also help constrain the potential influence of energetic solar particles on the atmosphere and biosphere during this critical time in Earth history. The data collected will also be useful for testing if continental plate velocities were higher than uniformitarian assumptions, in the past. The work will support graduate students and undergraduates, who will acquire valuable skills though training in the classroom, field studies and in the laboratory.


The suggestion that the entire solid Earth rotated by 90 degrees during Ediacaran to early Cambrian times (approximately 635-530 Ma), and that this sparked the early Cambrian explosion of life, is highly contentious. This is not a question of whether such an event, known as inertial interchange true polar wander (IITPW), is theoretically possible, but rather whether it occurred. Ultimately, the veracity of the event relies on the fidelity of paleomagnetic data. The PI team has recently examined this enigma using single silicate crystal paleomagnetic analysis, a method that allows the isolation of single-domain magnetic carriers that are the best field recorders, capable of preserving remanences on billion-year time scales. In their study of the Sept-Iles (approximately 565 Ma) intrusion (Canada), they have not found support for IITPW. Instead, they find evidence that the geomagnetic field was reversing during cooling of the intrusion. Preliminary analyses further suggest unusually low paleointensities. These observations provide the basis for an alterative hypothesis: the Ediacaran to early Cambrian geomagnetic field was unusually weak, and reversed frequently. The team will study three areas in southern Canada to test their hypothesis. This work will also broadly constrain the boundary conditions for biotic evolution during the key Ediacaran to early Cambrian interval, and will have implications for the core, mantle and surface environment. Specifically,the investigators hope to constrain i. whether the geodynamo was in an unusual state (perhaps associated with inner core growth), ii. if the magnetopause standoff distance was reduced, allowing greater penetration of energetic solar particles, and iii. if continental plate velocities were higher than uniformitarian assumptions. The work will support graduate students and undergraduates, who will acquire valuable skills though training in field studies in southern Canada and in the laboratory. They will combine field excursions, classroom studies and summer programs to give students a comprehensive research experience.
来源学科分类Geosciences - Earth Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/68367
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
John Tarduno.The nature of the Ediacaran to early Cambrian geomagnetic field.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[John Tarduno]的文章
百度学术
百度学术中相似的文章
[John Tarduno]的文章
必应学术
必应学术中相似的文章
[John Tarduno]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。