GSTDTAP
项目编号1505198
The Precipitation Response to El Niño/Southern Oscillation (ENSO) over Tropical South America: Spatial and Temporal Heterogeneity and the Role of the Land Surface
Benjamin Lintner
主持机构Rutgers University New Brunswick
项目开始年2015
2015-08-01
项目结束日期2018-07-31
资助机构US-NSF
项目类别Standard Grant
项目经费459601(USD)
国家美国
语种英语
英文摘要El Nino/Southern Oscillation (ENSO) events are known to have significant impacts on weather and climate worldwide, including reductions in rainfall over much of tropical South America with associated disruptions to water resources, agriculture, and other human and natural systems. The rainfall anomalies are ultimately due to changes in the large-scale atmospheric circulation induced by ENSO conditions in the neighboring equatorial Pacific, but they may also be modulated by land-atmosphere coupling occurring over South America. Here land-atmosphere coupling refers to several mechanisms through which the condition of the land surface influences precipitation, one of which is that soil moisture serves as a source of water vapor through evaporation and transpiration, thereby promoting precipitation. This sort of "precipitation recycling" can prolong and enhance dry spells, as lack of rain dries the soil and reduces evapotranspiration, leading to further reductions in rainfall. On the other hand, a drier land surface can mean greater heating of the land surface during the day as there is less evaporative cooling, and a hotter land surface can lead to instability in the atmospheric boundary layer, which increases the chances of convective precipitation. Land-atmosphere coupling can be quite variable depending on land cover and other factors, and can thus cause the rainfall response to ENSO events to be more spatially variable that would be expected from the large-scale atmospheric circulation anomalies. It can also cause changes in the frequency, intensity, and duration of daily and sub-daily rainfall episodes within the period of a season or more during which an ENSO event takes place.

The goal of this project is to determine the extent to which land-atmosphere coupling accounts for the spatial heterogeneity in the rainfall response to ENSO events over tropical South America. The research consists in large part of statistical analysis of precipitation and atmospheric and land surface data for tropical South America, taken from satellite and surface observations and reanalysis products. Parallel analysis is applied to model simulations from the Coupled Model Intercomparison Project version 5 (CMIP5), including simulations from the subset of models which contributed to the CMIP5 Global Land-Atmosphere Coupling Experiment (GLACE-CMIP5), in which models were integrated using climatological soil moisture so that land-atmosphere coupling could be assessed by comparison between simulations with interactive and fixed soil moisture. The statistical assessment is accompanied by model experiments using the quasi-equilibrium tropical circulation model version 2 (QTCM2), a simplified model which can simulate key aspects of the precipitation response over tropical South America, and in which key factors such as soil moisture, surface sensible heat flux, and the exchange of heat and water vapor between the boundary layer and the overlying free troposphere can be controlled and examined.

Work under this project has important broader impacts in addition to its scientific merit, given the substantial consequences of ENSO-related precipitation disruptions in the region. The results of this study are also expected to shed light on the role of land-atmosphere coupling in other regions of the tropics where similar surface conditions prevail. The work also promotes international collaboration, as it involves unfunded collaborators in two Columbian universities. Aside from the broader impacts of the research, the project also supports undergraduate research assistants through the Research in Science and Engineering (RiSE) program, a 10-week summer program which focuses on students from traditionally underrepresented populations. In addition, the project provides support and training to a graduate student, thereby providing for the next generation of the scientific workforce in this research area.
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/68396
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Benjamin Lintner.The Precipitation Response to El Niño/Southern Oscillation (ENSO) over Tropical South America: Spatial and Temporal Heterogeneity and the Role of the Land Surface.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Benjamin Lintner]的文章
百度学术
百度学术中相似的文章
[Benjamin Lintner]的文章
必应学术
必应学术中相似的文章
[Benjamin Lintner]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。