GSTDTAP
项目编号1558580
Testing the sponge-loop hypothesis for Caribbean coral reefs
Christopher Finelli
主持机构University of North Carolina at Wilmington
项目开始年2016
2016-02-15
项目结束日期2019-01-31
资助机构US-NSF
项目类别Standard Grant
项目经费818016(USD)
国家美国
语种英语
英文摘要Sponges are bottom-dwelling animals that dominate Caribbean reefs now that reef-building corals have been declining for decades. Sponges feed by filtering huge volumes of seawater, providing a mechanism for recycling organic material back to the reef. A new theory has been proposed called the "sponge-loop hypothesis" that is potentially the most important new concept in marine ecology in many years, because it seeks to explain Darwin's Paradox: how do highly productive and diverse coral reefs grow in desert-like tropical seas? The sponge loop hypothesis proposes that sponges on coral reefs absorb the large quantities of dissolved organic carbon (molecules such as carbohydrates) that are released by seaweeds and corals and return it to the reef as particles in the form of living and dead cells, or other cellular debris. This project will use a rigorous set of techniques to test the sponge-loop hypothesis in the field on ten of the largest and most common sponges on Caribbean reefs. For each species, the contributions of particles and dissolved organic carbon to sponge nutrition will be measured, as well as the production of cellular particles in the seawater flowing out of the sponge. For selected sponge species, the concentration of dissolved organic carbon entering the sponge will be experimentally enhanced to determine the capacity of the sponge to absorb this potential food source, and to gauge its effect on the production of cellular particles. This project will provide STEM education and training for postdoctoral, graduate and undergraduate students and public outreach in the form of easily accessible educational videos. Further, this project is important for understanding the carbon cycle on coral reefs where the effects of climate change and ocean acidification may be tipping the competitive balance toward non-reef-building organisms, such as sponges.

The cycling of carbon from the water-column to the benthos is central to marine ecosystem function; for coral reefs, this process begins with photosynthesis by seaweeds and coral symbionts, which then exude a substantial portion of fixed carbon as dissolved organic carbon (DOC) that may be lost to currents and tides. But if sponges, with their enormous water filtering capacity, can return DOC from the water column to the reef, it would represent a major unrecognized source of carbon cycling. The "sponge-loop hypothesis" has the potential to transform our understanding of carbon cycling on coral reefs. Building on preliminary data from studies of the giant barrel sponge, this project will investigate each of the three components of the sponge-loop hypothesis for ten common barrel, vase and tube-forming species that span a range of associations with microbial symbionts, from high microbial abundance (HMA) to low microbial abundance (LMA) in the sponge tissue. Specifically, the experimental approach will include InEx techniques (comparative sampling of seawater immediately before and after passage through the sponge), velocimetry, and flow cytometry to determine whether each species consumes DOC and produces particulate organic carbon (POC) in the form of cellular detritus. Then, for species that consume DOC, the same techniques will be used in manipulative experiments that augment the amount of DOC from three categories (labile, semi-labile and refractory) to determine the types of DOC consumed by sponges. In addition to testing the sponge-loop hypothesis, this project will use molecular techniques to investigate the differences among HMA and LMA sponge species, targeting the microbial symbionts that may be responsible for DOC uptake.
来源学科分类Geosciences - Ocean Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/69155
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Christopher Finelli.Testing the sponge-loop hypothesis for Caribbean coral reefs.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christopher Finelli]的文章
百度学术
百度学术中相似的文章
[Christopher Finelli]的文章
必应学术
必应学术中相似的文章
[Christopher Finelli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。