GSTDTAP
项目编号1602488
Collaborative Research: Demographic structure and recruitment patterns of the scyphozoan, Chrysaora melanaster, in the Bering Sea: the influence of climate on ecosystem function
Hongsheng Bi
主持机构University of Maryland Center for Environmental Sciences
项目开始年2016
2016-11-01
项目结束日期2019-10-31
资助机构US-NSF
项目类别Standard Grant
项目经费490545(USD)
国家美国
语种英语
英文摘要In the eastern Bering Sea, jellyfish biomass increased dramatically after 1990 and peaked in 2000. Biomass increased again during the cool period of 2007-2012. Overall, moderate to cold conditions tend to favor jellyfish in this system. During times of population increase, jellyfish likely have major impacts on the Bering Sea food web, including Walleye Pollock fisheries, because the medusae directly feed on young life stages of fish and compete with fish for food. This project will estimate the age structure and age-specific abundances of the predominant jellyfish in the Bering Sea, Chrysaora melanaster, and will relate this to adult medusa abundance in order to understand how their population structure changes with time. The ultimate goal is to estimate the reproductive capacity and success of this jellyfish in relation to climate variability and to investigate the potential for increases of this jellyfish to become a recurring pattern in the Bering Sea given future climate scenarios.

This project will contribute to STEM workforce development through the support for the training of a graduate student. The investigators will participate in K-12 teacher training workshops. Undergraduate students will be entrained into the research through an existing Research Experience for Undergraduates program. Elementary school students will be introduced to marine science through visits to the principal investigator?s laboratory. A website for the project, including novel imagery, will be developed. Open-source code for image processing will be posted on the World Wide Web as a resource for the larger scientific community.

The importance of incorporating age-specific abundances and age structure in assessments of the population dynamics of a species in relation to environmental change is well-established in fisheries science and other disciplines that attempt to understand the temporal variation of populations. Rigorous investigations will be conducted to estimate the abundance and fine-scale spatial distribution of C. melanaster including both their early planktonic and adult stages, to determine their age structure, and to construct a population model to identify recruit success and recruitment timing. This research will examine how gelatinous zooplankton populations respond to large scale environmental changes and will also facilitate understanding of the reoccurring jellyfish population increases in the Bering Sea. The sonar imaging technologies (ARIS1800) are effective in sampling adult forms of the congener C. quinquecirrha and an advanced optical ZOOplankton VISualization (ZOOVIS) system can sample small jellyfish effectively. The combination of net sampling and new aging techniques will provide much needed information on the age-structure within cohorts and will facilitate understanding of recruitment processes, e.g. single cohort versus multiple cohorts. This will in turn enable forecasting of jellyfish abundance and their predatory impacts in the Bering Sea ecosystem.
来源学科分类Geosciences - Polar Programs
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70580
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Hongsheng Bi.Collaborative Research: Demographic structure and recruitment patterns of the scyphozoan, Chrysaora melanaster, in the Bering Sea: the influence of climate on ecosystem function.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hongsheng Bi]的文章
百度学术
百度学术中相似的文章
[Hongsheng Bi]的文章
必应学术
必应学术中相似的文章
[Hongsheng Bi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。