GSTDTAP
项目编号1660049
Mechanisms for the Seasonal Transition of Precipitation Organization in the Southeastern United States: Current and Future Climate
Rosana Nieto-Ferreira
主持机构East Carolina University
项目开始年2017
2017-04-01
项目结束日期2020-03-31
资助机构US-NSF
项目类别Continuing grant
项目经费146982(USD)
国家美国
语种英语
英文摘要Seasonal transition

The Southeastern United States (SE US) owes its ample water resources to many forms of precipitation, from the large-scale precipitation associated with frontal weather systems to sea-breeze convection associated with the adjacent Atlantic, to tropical cyclones, mesoscale convective systems and afternoon thunderstorms. These precipitation types differ in important ways including their predictability and their sensitivity to changes in regional climate, thus an understanding of their behavior and relative contributions to mean precipitation and precipitation change over the SE US is desirable. The PIs have developed a simple characterization of precipitating cloud systems into mesoscale precipitation features (MPFs), which consist of a contiguous region of precipitation of at least 100 km length, and smaller and shorter-lived isolated precipitation features (IPFs). Despite the simplicity of the classification scheme, it has proven effective for understanding the geographical and temporal behavior of SE US precipitation.

A key result of the PIs' previous research is that while MPFs (which include frontal precipitation and mesoscale convective systems) do not exhibit a strong seasonal cycle, the seasonal cycle of IPFs is characterized by a relatively abrupt spring onset occurring between May and June and concentrated over Florida, the adjacent coastline of the Gulf of Mexico, and the Atlantic coast as far north as Cape Hatteras. The onset of IPF rainfall over the SE US is somewhat reminiscent of the abrupt transition to the rainy season in monsoon regions such as West Africa and East Asia, which have been more extensively studied than the SE US.

Work conducted here explores the springtime IPF onset using a combination of observational data and numerical model simulations. Observational data come from the National Mosaic and Multi-sensor Quantitative Precipitation Estimation (NMQ) dataset, NEXRAD-based and gauge-adjusted precipitation dataset, a precipitation dataset constructed from the NEXRAD network of radar stations that covers nearly all of the continental US. The PIs have developed an automated precipitation organization classification algorithm to identify MPFs and IPFs, and they apply the algorithm to to 11 years (2002-2012) of NMQ data on a one hourly basis to capture statistics of the spring IPF onset. These data will be used in conjunction with the North American Regional Reanalysis to assess contributions to the onset from thermodynamic factors such as convective available potential energy and convective inhibition, or circulation changes such as the seasonal movement of the North American subtropical high (NASH) and low-level jets in the region.

A further goal is to understand how IPF seasonality may change in a changing climate. The PIs hypothesize that the IPF onset would occur earlier in a warmer climate, as the relevant thermodynamic factors would likely occur earlier in the year given a warmer base state. Research on IPF sensitivity to background warming is conducted using the Weather Research and Forecasting (WRF) model, which is used to simulate weather and climate over a regional domain given meteorological conditions at the boundaries. The simulations use the pseudo global warming (PGW) method, in which meteorological conditions are taken from operational meteorological analysis to simulate the seasonal transition in recent years of record, and simulations are then repeated using boundary conditions to which differences between future and present-day climate simulations are added to represent anticipated climate change.

The seasonal transition of precipitation types over the SE US is of interest for practical as well as scientific reasons, as decision makers rely on weather and climate forecasts for agricultural planning as well as guidance on precipitation-related hazards and urban development. The PIs engage with local communities from Raleigh to the Outer Banks through the general public. Results of the project are used in courses taught by the PIs, in part though a WRF-based teaching laboratory for weather forecasting, which serves an educational purpose and also enhances the success of students pursuing careers in weather prediction.
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70953
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Rosana Nieto-Ferreira.Mechanisms for the Seasonal Transition of Precipitation Organization in the Southeastern United States: Current and Future Climate.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rosana Nieto-Ferreira]的文章
百度学术
百度学术中相似的文章
[Rosana Nieto-Ferreira]的文章
必应学术
必应学术中相似的文章
[Rosana Nieto-Ferreira]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。