GSTDTAP
项目编号1756851
Collaborative Research: Probing the Metabolic and Electrical Interactions of Cable Bacteria in Anoxic Sediments
Samantha Joye
主持机构University of Georgia Research Foundation Inc
项目开始年2018
2018-07-01
项目结束日期2021-06-30
资助机构US-NSF
项目类别Standard Grant
项目经费369682(USD)
国家美国
语种英语
英文摘要Marine sediments represent the world's largest repository of stored organic carbon, and understanding how microorganisms break down this carbon is an imperative for understanding global carbon cycling. Yet long-standing questions remain regarding how networks of microorganisms work together to accomplish the complete breakdown of organic carbon in marine sediments. Sediment microbes interact in a myriad of ways that couple their metabolism to the break down of organic carbon, including by sharing products of metabolism. Accumulating evidence further suggests that some microorganisms can interact by transferring electrons directly to other unrelated microorganisms. This ability occurs across diverse microorganisms and appears to be widespread in the biosphere, particularly in anaerobic environments such as marine sediments. This project addresses emerging questions about the identity and metabolic linkages between microorganisms that work together in natural anaerobic marine and estuarine sediments to break down organic carbon. The investigators approach these questions by focussing on the influence of a keystone bacterium on its surrounding microbial community. "Cable bacteria" are a recently discovered group of long filamentous bacteria that act as electrical conductors in aquatic sediments providing a conduit for electrons to commute from deeper sulfidic sediments up to the surface oxygen layer by the process of centimeter-scale electron transport. Since their discovery about 6 years ago, these bacteria have been observed in a wide range of depositional sedimentary environments, often at extremely high cell densities. Where these bacteria are abundant, such as in coastal marine muds, they drive intense localized changes in pH and strongly influence the mineral cycling. This research explorew the direct and indirect influence of cable bacteria on the metabolic activity of associated microorganisms. This project also advance the education and training of two early-career investigators, two PhD students, and undergraduate students. The skills and expertise gained from these PhD research projects will enable the students to be competitive in academic pursuits and in bioinformatics and technology applications relevant to private industry. The scientific discoveries emerging from this work is being incorporated into undergraduate and graduate level courses in marine microbial ecology. The research team will reach out to the broader community by hosting public lectures promoting a better understanding of environmental microbial ecology.

The proposed work is to investigate the role of cable bacteria in structuring sediment microbial communities. Due to their growth strategy and morphology, cable bacteria are particularly amenable to experimental manipulation, providing an outstanding opportunity to better understand community interactions among microorganisms in a natural and complex anaerobic environment. The investigators will explore the interactions and relationships between cable bacteria and their associated microbial community by manipulating the growth and activity of cable bacteria and quantifying the resultant microbial community response. Specifically, this project aims to (1) identify microorganisms whose growth is enhanced by cable bacteria, (2) identify metabolic processes linked with cable bacteria activity using metatranscriptomics, (3) test specific metabolic links between sediment microorganisms and cable bacteria activity using a DNA-stable isotope probing (SIP) approach, and (4) visually confirm the identity and quantify key microorganisms associated with cable bacteria using microscopy. As more is learned about the identity and the mechanisms by which microorganisms are metabolically linked in anoxic sediments, we will be better able to understand and make predictions about how microorganisms function in their environment and how they can be utilized in bioengineered systems.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72844
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Samantha Joye.Collaborative Research: Probing the Metabolic and Electrical Interactions of Cable Bacteria in Anoxic Sediments.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Samantha Joye]的文章
百度学术
百度学术中相似的文章
[Samantha Joye]的文章
必应学术
必应学术中相似的文章
[Samantha Joye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。