GSTDTAP
项目编号1841568
EAGER SitS: Emergent Properties during Soil Formation
Susan Brantley
主持机构Pennsylvania State Univ University Park
项目开始年2018
2018-09-15
项目结束日期2020-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费300000(USD)
国家美国
语种英语
英文摘要Soils sustain humankind. These earth materials form as water, air, and dead and living organisms interact with rock material at Earth's surface. Soils form over thousands to millions of years and yet soil can be lost to erosion over human time frames. In this proposed work, innovative sensors and techniques will be used to measure and understand how iron and oxygen are catalyzed by bacteria to interact in soils, affecting the pathways where water flows in the subsurface. The work will focus on soil formation at an NSF-funded observatory in Pennsylvania - a Critical Zone Observatory - where a large effort is ongoing to understand such processes. New scientific knowledge will be developed about how micro-organisms change the chemistry of rock and break it open as it turns into soil, and how this relates to subsurface water flow. At the same time, the new techniques will provide new knowledge of societal relevance about how soil forms, and will also be shown to many other faculty members, students, and colleagues that visit the observatory, as well as members of the public through interactions with a local museum. In addition, the observatory is the site of an annual NSF-funded Geophysics field course where the two techniques to be deployed will be taught to an annual cohort of undergraduate students drawn from under-represented groups and community colleges.

With high-risk experiments using novel deployments, biogeochemical reactions will be explored with respect to how they relate to zones of lateral water flow. Two techniques will be investigated over month- to year-long deployments: the first will measure microbial activity (chronoamperometry) and the second will measure the effects of water-induced changes in volume of rock materials (time-lapse seismic monitoring). Both techniques are still in their infancy because they depend on new sensor technologies and state-of-the-art interpretations. The deployment of these techniques together in a location where many other measurements have already been made will guarantee the highest likelihood of success.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/73455
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Susan Brantley.EAGER SitS: Emergent Properties during Soil Formation.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Susan Brantley]的文章
百度学术
百度学术中相似的文章
[Susan Brantley]的文章
必应学术
必应学术中相似的文章
[Susan Brantley]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。