GSTDTAP
项目编号NE/N004744/1
Innovate UK Real Time Detection of Respirable Crystalline Silica (RCS)
[unavailable]
主持机构University of Hertfordshire
项目开始年2015
2015-04-01
项目结束日期2016-03-31
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要The concept behind this project is based on the use of spatial light scattering (SLS) analysis and related optical technologies to enable differentiation of Respirable Crystalline Silica from other ambient dust particles. It will consist of a miniature optical particle sampling chamber that will enable RCS particles to be individually identified, counted and sized separately from the background dust. When coupled with suitable data processing electronics and software to include particle loss mechanisms, density and other factors, the completed detector unit will provide a real-time output of RCS mass concentration in the environment. Being crystalline in nature, fracking sand splinters into particles that have facetted surfaces, i.e. flat mirror-like fractures, and it is this particular characteristic of RCS dust that forms the basis of the project. When passed through an illuminating light beam (such as that from a laser), faceted particles result in scattering patterns which are highly asymmetric about the beam axis, unlike virtually all other particle morphologies. This means that the Centroid of Intensity (COI), or the 'centre of gravity' of the light pattern of an RCS particle lies a significant distance from the axis, in contrast to those of other particles which are close to it. So, by setting a discrimination radius around the axis only facetted particles will be registered. RCS particles may represent a small percentage of the total particle population so a viable sensor would need a high throughput (typically ~ 10,000/second) so calculating the COI using conventional image processing techniques is impractical. Position Sensitive Devices (PSD), offer an ideal solution being low cost and producing accurate X-Y analogue outputs defining the COI of the light falling on the chip. Thus, a simple empirically-determined 'threshold' distance of the COI from the pattern centre allows differentiation of facetted particles patterns. An additional 'orthogonal' optical measurement, such as birefringence or fluorescence, will also be incorporated to provide a high discrimination level and minimize false-positive RCS detection. The project will involve close collaboration between Trolex and the Particle Instruments Research Group at the University of Hertfordshire. The University will be responsible for the sensor technology development, the design of the detection chamber and optics, and laboratory evaluation using prepared dusts. Trolex will be responsible for producing a fieldable technology demonstrator instrument that will enable the detector output to be presented as a real-time RCS density in a real-world environment.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/85534
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
[unavailable].Innovate UK Real Time Detection of Respirable Crystalline Silica (RCS).2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[unavailable]]的文章
百度学术
百度学术中相似的文章
[[unavailable]]的文章
必应学术
必应学术中相似的文章
[[unavailable]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。