GSTDTAP
项目编号NE/M011747/1
Detection and characterisation of inflammatory agents associated with bioaerosol emitted from biowaste and intensive agriculture
[unavailable]
主持机构University of Plymouth
项目开始年2015
2015-05-01
项目结束日期2018-04-30
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要The biowaste (eg composting) and intensive agriculture (eg housed poultry / pigs) industries emit bioaerosol of significance to human health. Whilst some progress has been made in characterising emissions from these industries relatively little headway has been made regarding the linked research questions of: understanding exposure of the general public to bioaerosol; putting process-based exposures into the context of background exposure to natural bioaerosol (or other anthropogenic sources); quantifying health risk and setting health-based standards. A critical limiting factor in all of these areas is the lack of advanced microbiological methods (sampling, analytical, interpretative) to quantify and qualify bioaerosol emissions and dispersion. Our current evidence base is almost entirely reliant on short duration "snapshot" sampling and culture-dependent microbiology. Whilst traditional microbiology remains fit for purpose in specific circumstances, new fast and efficient methods are needed to understand the nature and significance of non-viable bioaerosol fractions and to develop a new generation of monitoring approaches to deal with the research questions posed above.
Aerosolised endotoxin is an attractive research subject in the context of this NERC programme. It is ubiquitous in biowaste and agricultural emissions. Previous occupational bioaerosol research has established an exposure-response relationship. In the Netherlands, endotoxin is regarded as the prime candidate for health-based bioaerosol emission limits / exposure guidelines for workers and the public. Yet, confidence in the development and implementation of evidence-based regulation of this bioaerosol molecule continues to be constrained by gaps in our fundamental understanding of the nature of endotoxin in ambient air which in turn stems from limitations in measurement techniques. In this research we aim to develop new methodologies capable of characterising and quantifying emissions of endotoxin in air.
Objectives
- develop new methods to size fractionate endotoxin and elucidate structural features;
- develop a novel biosensor for rapid detection of endotoxin, other inflammatory agents and cells (live/dead)
- use the WIBS real-time bioaerosol sensor to understand emission and dispersion of bioaerosol including endotoxin
- characterise industry-specific bioaerosol emissions at composting and farm sites
- detect microbial pathogens at biowaste and intensive agricultural facilities using novel methods
- generate improved exposure assessments around biowaste / intensive agricultural facilities using dispersion modelling and Openair.
Whilst our work plan focuses on new endotoxin detection methods we are cogniscent of the fact that there are other biomolecules in air that promote inflammation when inhaled. These will be detected by the novel biosensor and we aim to distinguish the signalling pathways and demonstrate how the cells respond to different biomolecular challenges.
The research team has unparalleled experience in translating cutting edge bioaerosol science into policy and practice. Uncertainty with respect to health effects from regulated industrial processes is deleterious to all stakeholders concerned including the public, regulators, the Government, industry and investors. The public remains fearful of the potential health impacts. Regulators face uncertainty in terms of striking the right balance between public health protection and encouraging economic development. Planning and licensing delays constrain Government waste strategy and economic development initiatives and create problems for entrepreneurs trying to deliver Government targets and establish viable businesses. Whilst this research will be underpinned by excellent new science, it is clear that the impact agenda is driven by the potential for translating this into a regulatory science evidence base, new regulatory guidance and models for the protection of public health.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/85586
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
[unavailable].Detection and characterisation of inflammatory agents associated with bioaerosol emitted from biowaste and intensive agriculture.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[unavailable]]的文章
百度学术
百度学术中相似的文章
[[unavailable]]的文章
必应学术
必应学术中相似的文章
[[unavailable]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。