GSTDTAP
项目编号NE/P003796/1
Development of an automated analytical system for measurement of whole-organism environmental sensitivity of aquatic embryos
[unavailable]
主持机构University of Plymouth
项目开始年2016
2016-06-30
项目结束日期2017-06-29
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要Our planet is undergoing unprecedented environmental change and there is an urgent need to understand how species respond to altered abiotic conditions. Development of new technologies has recently seen a revolution in Biology with the advent of tools that enable us to quantify how organisms respond to environmental change at the level of molecules and genes in extremely fine detail. This technological approach to measuring how an organism responds to changes in their environment has become a central theme across Biology. However, technologies for measuring whole-organism level responses have not kept pace, leading to a disconnect between our understanding at these two levels of biological organization. This disconnect is due, in large part, to the challenge of quantifying, in a meaningful way, the complexity and diversity of form and function that is observed at the whole-organism level.

The task of quantifying form and function at the whole-organism level is most challenging for organisms during their early development when both form and function are undergoing dynamic transitions. Yet it is at this time when organisms may be most sensitive to environmental stress. Furthermore, the experience of embryos to such stress can have impacts that persist into later life stages, including reproduction. It is therefore important that the effects of environmental stress on early life stages are incorporated into monitoring and prediction of how organisms will respond to forecasted global environmental change.

A major objective in our laboratory is to gain a better understanding of how environmental stressors affect the physiology of early life stages of aquatic invertebrates. We have developed a unique bio-imaging capability that allows us to produce high-resolution (temporal and spatial) time lapse video of developing embryos, exposed to tightly controlled environmental conditions. We then extract data from these videos to quantify their physiological function using manual video analysis. Such manual data extraction is time consuming and can be an error-prone and subjective process. Consequently, the process of image analysis forms a major bottleneck in the efficacy and application of this approach to quantification of the responses of large numbers of organisms to environmental change.

The main aim of this project is to develop an analytical platform encompassing image analysis pipelines that automate the measurement of a wide range of embryonic features from video. To achieve this we will build image analysis pipelines for measuring functionally relevant traits including growth, gross movement, muscle contraction, heart function, developmental stage and developmental rates. Image analysis pipelines will be embedded within an analytical platform creating a system for organism-wide measurement of different functional traits in individual embryos. Short- and long-term responses of two species (a marine shrimp and freshwater snail) to contrasting temperatures will be used to develop, optimize and validate the analytical framework. The resultant data will enable unrivalled measurement of the responses of developing organisms to factors including environmental stress. This analytical platform would be a powerful tool to any field with an interest in measuring phenotypes in organisms developing in transparent egg capsules e.g. environmental sensitivity measurement, ecotoxicology and drug discovery.

Increasing mean global temperatures are threatening both freshwater and marine ecosystems and the use of contrasting temperature will enable assessment of the efficacy of the automated analytical platform in quantifying the sensitivity of early life stages to a current global threat. The analytical resource being developed in this project will facilitate the development of a fully automated capability for measuring the responses and sensitivities of embryonic stages to environmental stress across different aquatic species.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/86247
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
[unavailable].Development of an automated analytical system for measurement of whole-organism environmental sensitivity of aquatic embryos.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[unavailable]]的文章
百度学术
百度学术中相似的文章
[[unavailable]]的文章
必应学术
必应学术中相似的文章
[[unavailable]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。