GSTDTAP
项目编号NE/P011365/1
Calving Laws for Ice Sheet Models CALISMO
Douglas Benn
主持机构University of St Andrews
项目开始年2017
2017-04-01
项目结束日期2020-07-31
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要Sea levels will rise significantly in the coming decades as a result of greenhouse gas emissions, but there are large uncertainties about how fast they will rise in different emission futures. In a warming climate, the main causes of sea level rise are thermal expansion of sea water, melting of glaciers and ice sheets, and ice-flow directly into the oceans (dynamic ice loss). Dynamic ice loss from the Greenland and Antarctic Ice Sheets is, by a large margin, the greatest source of uncertainty in predictions of sea level rise, and ranges from 10 cm to over 1 m by 2100 in a high emissions scenario. The upper and lower limits of this range have very different implications for coastal communities and economies, hampering efforts to plan for the future. Identifying safe limits on carbon emissions and adopting appropriate mitigation strategies require reliable predictions of dynamic ice loss from the ice sheets.

Dynamic ice loss is complex because it is controlled by the fracture and detachment of icebergs (calving) and the submarine melt of ice in contact with the ocean. Calving and melting can reduce resistance to ice flow, leading to faster transfer of mass from land to the oceans and potentially to irreversible ice-sheet collapse. Despite their importance, calving and submarine melting are very poorly represented in the models used to predict ice-sheet response to climate change, resulting in high uncertainties in future dynamic ice loss and hence sea-level rise. There is an urgent need to develop reliable calving laws for ice sheet-models, based on a thorough understanding of calving processes and their interactions with ice flow and submarine melt.

We aim to solve this problem using a new high-resolution model of fracturing, ice-dynamics and ocean processes (FIDO), to build a solid foundation for the development of the calving laws required for predictive ice-sheet models. FIDO combines state-of-the-art methods of modelling ice-flow and ocean circulation with a revolutionary ice-fracture model. Unlike conventional approaches, the fracture model represents ice as assemblages of particles linked by breakable bonds - much like real ice - allowing calving to be simulated with impressive realism. We will use FIDO to simulate calving, submarine melt and ice flow in a wide range of environmental conditions, and rigorously test the validity of the results using satellite observations of ice margin behaviour in Greenland and Antarctica.

From the FIDO model results, we will distil the essential rules of calving and define new, comprehensive calving laws incorporating interactions with submarine melt and ice dynamics. In collaboration with UK and international partners, we will implement our new calving laws in models of the Greenland and Antarctic Ice Sheets, to predict their 21st Century sea-level contributions for a range of greenhouse gas emission scenarios. We anticipate radically improved sea-level rise predictions by 2020, in readiness for the 6th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6).
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/86627
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Douglas Benn.Calving Laws for Ice Sheet Models CALISMO.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Douglas Benn]的文章
百度学术
百度学术中相似的文章
[Douglas Benn]的文章
必应学术
必应学术中相似的文章
[Douglas Benn]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。