GSTDTAP
项目编号NE/P01982X/1
RELEASING DIVALENT CATIONS TO SEQUESTER CARBON ON LAND AND SEA
Gideon Henderson
主持机构University of Oxford
项目开始年2017
2017-07-01
项目结束日期2021-06-30
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要The natural response of the carbon cycle to the warming induced by increased atmospheric CO2 features two negative feedbacks that remove CO2 from the atmosphere. One, caused by the greater acidity of the oceans, is for carbonate minerals to be dissolved, which causes an increase in the ability of seawater to contain carbon (as the bicarbonate ion). The other is for warmer conditions to increase the rate at which silicate minerals dissolve, with the products either precipitated as carbonate minerals, or flowing to the oceans. This silicate weathering also removes CO2 from the atmosphere.

Intentional acceleration of these two weathering feedbacks is a potential approach to remove the CO2 added to the atmosphere by burning of fossil fuels, and therefore alleviate extreme climate change. Such an approach is challenging, however, because to be useful at a significant scale (i.e. 1-10 GtC pa removal), requires a dramatic increase in weathering relative to natural rates. Whether such accelerated weathering is a feasible route to remove significant atmospheric CO2 is unknown. This proposal will address this unknown, and provide a comprehensive assessment of the feasibility of CO2 removal by accelerated weathering, including consideration of the technical, economic, environmental, and societal aspects of the approach.

The core of our work will be a life-cycle assessment of the enhanced-weathering approaches that might lead to 1-10Gt removal of CO2 per year. This modelling will start from the availability of minerals for weathering, paying particular but not exclusive attention to waste materials from industries such as mining. It will consider how the weathering of these minerals might be enhanced, either through treatment in mining waste piles or, in collaboration with project partners, by addition to soils. It will also consider the fate of the weathered materials, either as carbonate on land or in the sea, or as alkalinity in the sea. It will assess the economic cost of such approaches, the energy requirements, the environmental damage they would cause, and the societal limitations on such approaches (e.g. social acceptability, political, legal, governance).

In some key areas, understanding is not yet sufficient to allow this life-cycle assessment. We will address these gaps in knowledge by five specific pieces of research. These will:
1. Characterise how much waste material is available for enhanced weathering, including its location, its grain size, and its chemistry and mineralogy. This is critical information to underpin the life-cycle assessment.
2. Measure how quickly typical minerals weather and how this weathering rate changes with temperature and, particularly, through addition of microbes that are known to cause accelerated weathering of silicates.
3. Assess how best to scale up weathering to the 1-10GtC pa level. This will be done by both modelling of possible engineered approached to weathering, and by experiments on piles of silicate and carbonate minerals (each of 10 cubic meters), in which the conditions are altered and responses measured.
4. Assess the response of the ocean to increased alkalinity resulting from enhanced weathering. If more carbonate is produced in the ocean, it reduces the effectiveness of enhanced weathering; we will measure the rates of both inorganic and biological carbonate formation and their impact in the C cycle globally.
5. Consider how society will response to possible scenarios for accelerated weathering, and whether this may limit such an approach. Will enhanced weathering be socially acceptable? Will there be the political will to pursue it? Are their legal or governance barriers?

Information from these five "research components" will provide critical information for the life-cycle assessment, and thereby allow the overall potential and challenge of enhanced weathering CO2 removal to be fully assessed.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/86762
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Gideon Henderson.RELEASING DIVALENT CATIONS TO SEQUESTER CARBON ON LAND AND SEA.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gideon Henderson]的文章
百度学术
百度学术中相似的文章
[Gideon Henderson]的文章
必应学术
必应学术中相似的文章
[Gideon Henderson]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。