GSTDTAP
项目编号NE/R000026/1
NSFGEO-NERC: Two-phase dynamics of temperate ice
Richard Foa Katz
主持机构University of Oxford
项目开始年2017
2017-08-01
项目结束日期2020-07-31
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要Discharge of ice from the Antarctic Ice Sheet is dominated by ice-stream flow, but there is no consensus as to what controls the onset and geometry of ice streams or their evolution. Diverse observations clearly indicate the importance of water in affecting flow resistance, both within the icestream margins and at the bed. However, ice-stream models do not yet account for the necessary feedbacks among temperature, water content, and ice deformation to resolve and interrogate these processes. Specific observations highlight processes and knowledge gaps: (i) the basal hydrology of ice streams is responsible for low basal shear stresses that focus stress and strain at ice-stream margins; (ii) strain heating within ice-stream shear margins raises the temperature of the ice to the pressure melting point, causing internal dissipative melting and helping to control the distribution of temperate ice; (iii) interstitial water in ice-stream margins may significantly soften the ice, with poorly known dynamical consequences; (iv) the dependence of ice rheology on water content is itself poorly constrained; (v) the multiphase dynamics of temperate ice, including permeability and drainage rates within ice sheets, are not known; (vi) routing of meltwater to and at the bed is a primary control on ice speed. Without models that address these processes, predictions of the ice sheet's mass balance and sea-level contribution will inevitably be speculative, with incomplete physical grounding.

This study will target the dynamics of temperate ice, with the overarching goal of determining its effect on ice streaming. The project will have two components that reinforce each other: laboratory experiments in which an existing rotary device at Iowa State University will be used to study the effect of water content on the rheology and permeability of temperate ice; and development at Oxford University of a two-phase, thermo-mechanical theory for temperate ice flow-with water production, storage, and routing-that will serve at the basis for fully dynamic and multidimensional models of ice-stream motion. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/86778
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Richard Foa Katz.NSFGEO-NERC: Two-phase dynamics of temperate ice.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Richard Foa Katz]的文章
百度学术
百度学术中相似的文章
[Richard Foa Katz]的文章
必应学术
必应学术中相似的文章
[Richard Foa Katz]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。