GSTDTAP

浏览/检索结果: 共92条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Individual differences determine the strength of interactions 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) : 17068-17073
作者:  Griffiths, Jason, I;  Childs, Dylan Z.;  Bassar, Ronald D.;  Coulson, Tim;  Reznick, David N.;  Rees, Mark
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/09
size structure  asymmetric competition  Trinidadian guppies  
Contactless probing of polycrystalline methane hydrate at pore scale suggests weaker tensile properties than thought 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Atig, Dyhia;  Broseta, Daniel;  Pereira, Jean-Michel;  Brown, Ross
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/09
Rapid geomagnetic changes inferred from Earth observations and numerical simulations 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Davies, Christopher J.;  Constable, Catherine G.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/09
In situ evidence of thermally induced rock breakdown widespread on Bennu's surface 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Molaro, J. L.;  39;Aubigny, C. Drouet
收藏  |  浏览/下载:8/0  |  提交时间:2020/06/16
Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Glerum, Anne;  Brune, Sascha;  Stamps, D. Sarah;  Strecker, Manfred R.
收藏  |  浏览/下载:17/0  |  提交时间:2020/06/16
Synthesis and properties of free-standing monolayer amorphous carbon 期刊论文
NATURE, 2020, 577 (7789) : 199-+
作者:  Toh, Chee-Tat;  Zhang, Hongji;  Lin, Junhao;  Mayorov, Alexander S.;  Wang, Yun-Peng;  Orofeo, Carlo M.;  Ferry, Darim Badur;  Andersen, Henrik;  Kakenov, Nurbek;  Guo, Zenglong;  Abidi, Irfan Haider;  Sims, Hunter;  Suenaga, Kazu;  Pantelides, Sokrates T.;  Ozyilmaz, Barbaros
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks(1), recent experimental evidence favours the competing crystallite model in the case of amorphous silicon(2-4). In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition(5), of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model(6). We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.


  
Causal effects of population dynamics and environmental changes on spatial variability of marine fishes 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Jheng-Yu;  Kuo, Ting-Chun;  Hsieh, Chih-hao
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/01
Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Schroeder, John W.;  Dobson, Andrew;  Mangan, Scott A.;  Petticord, Daniel F.;  Herre, Edward Allen
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
Observation of Bose-Einstein condensates in an Earth-orbiting research lab 期刊论文
NATURE, 2020, 582 (7811) : 103-+
作者:  Yamamoto, Keisuke;  Venida, Anthony;  Yano, Julian;  Biancur, Douglas E.;  Kakiuchi, Miwako;  Gupta, Suprit;  Sohn, Albert S. W.;  Mukhopadhyay, Subhadip;  Lin, Elaine Y.;  Parker, Seth J.;  Banh, Robert S.;  Paulo, Joao A.;  Wen, Kwun Wah;  Debnath, Jayanta;  Kim, Grace E.;  Mancias, Joseph D.;  Fearon, Douglas T.;  Perera, Rushika M.;  Kimmelman, Alec C.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Quantum mechanics governs the microscopic world, where low mass and momentum reveal a natural wave-particle duality. Magnifying quantum behaviour to macroscopic scales is a major strength of the technique of cooling and trapping atomic gases, in which low momentum is engineered through extremely low temperatures. Advances in this field have achieved such precise control over atomic systems that gravity, often negligible when considering individual atoms, has emerged as a substantial obstacle. In particular, although weaker trapping fields would allow access to lower temperatures(1,2), gravity empties atom traps that are too weak. Additionally, inertial sensors based on cold atoms could reach better sensitivities if the free-fall time of the atoms after release from the trap could be made longer(3). Planetary orbit, specifically the condition of perpetual free-fall, offers to lift cold-atom studies beyond such terrestrial limitations. Here we report production of rubidium Bose-Einstein condensates (BECs) in an Earth-orbiting research laboratory, the Cold Atom Lab. We observe subnanokelvin BECs in weak trapping potentials with free-expansion times extending beyond one second, providing an initial demonstration of the advantages offered by a microgravity environment for cold-atom experiments and verifying the successful operation of this facility. With routine BEC production, continuing operations will support long-term investigations of trap topologies unique to microgravity(4,5), atom-laser sources(6), few-body physics(7,8)and pathfinding techniques for atom-wave interferometry(9-12).


  
The architecture of the Gram-positive bacterial cell wall 期刊论文
NATURE, 2020, 582 (7811) : 294-+
作者:  Farquharson, Jamie I.;  Amelung, Falk
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics(1,2). Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor(1,3). In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength(4-6). Here we applied atomic force microscopy(7-12) to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent  the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface(13,14), providing information complementary to traditional structural biology approaches.


Using high-resolution atomic force microscopy of live cells, the authors present an updated view of the cell walls of both Staphylococcus aureus and Bacillus subtilis.