GSTDTAP

浏览/检索结果: 共35条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Senolytic CAR T cells reverse senescence-associated pathologies 期刊论文
NATURE, 2020, 583 (7814) : 127-+
作者:  Cortez, Jessica T.;  Montauti, Elena;  Shifrut, Eric;  Gatchalian, Jovylyn;  Zhang, Yusi;  Shaked, Oren;  Xu, Yuanming;  Roth, Theodore L.;  Simeonov, Dimitre R.;  Zhang, Yana;  Chen, Siqi;  Li, Zhongmei;  Woo, Jonathan M.;  Ho, Josephine;  Vogel, Ian A.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment(1,2). Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells(3,4)and has a beneficial role in wound-healing responses(5,6). Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis(1,7). Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity(1,2,8-10). Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)(11)as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein that is upregulated on senescent cells, eliminate senescent cells in vitro and in vivo and reduce liver fibrosis in mice.


  
Tail-propelled aquatic locomotion in a theropod dinosaur 期刊论文
NATURE, 2020
作者:  Banerjee, Antara;  Fyfe, John C.;  Polvani, Lorenzo M.;  Waugh, Darryn;  Chang, Kai-Lan
收藏  |  浏览/下载:80/0  |  提交时间:2020/07/03

Discovery that the giant theropod dinosaur Spinosaurus has a large flexible tail indicates that it was primarily aquatic and swam in a similar manner to extant tail-propelled aquatic vertebrates.


In recent decades, intensive research on non-avian dinosaurs has strongly suggested that these animals were restricted to terrestrial environments(1). Historical proposals that some groups, such as sauropods and hadrosaurs, lived in aquatic environments(2,3) were abandoned decades ago(4-6). It has recently been argued that at least some of the spinosaurids-an unusual group of large-bodied theropods of the Cretaceous era-were semi-aquatic(7,8), but this idea has been challenged on anatomical, biomechanical and taphonomic grounds, and remains controversial(9-11). Here we present unambiguous evidence for an aquatic propulsive structure in a dinosaur, the giant theropod Spinosaurus aegyptiacus(7,12). This dinosaur has a tail with an unexpected and unique shape that consists of extremely tall neural spines and elongate chevrons, which forms a large, flexible fin-like organ capable of extensive lateral excursion. Using a robotic flapping apparatus to measure undulatory forces in physical models of different tail shapes, we show that the tail shape of Spinosaurus produces greater thrust and efficiency in water than the tail shapes of terrestrial dinosaurs and that these measures of performance are more comparable to those of extant aquatic vertebrates that use vertically expanded tails to generate forward propulsion while swimming. These results are consistent with the suite of adaptations for an aquatic lifestyle and piscivorous diet that have previously been documented for Spinosaurus(7,13,14). Although developed to a lesser degree, aquatic adaptations are also found in other members of the spinosaurid clade(15,16), which had a near-global distribution and a stratigraphic range of more than 50 million years(14), pointing to a substantial invasion of aquatic environments by dinosaurs.


  
Dietary modifications for enhanced cancer therapy 期刊论文
NATURE, 2020, 579 (7800) : 507-517
作者:  Keller, Matthew D.;  Ching, Krystal L.;  Liang, Feng-Xia;  Dhabaria, Avantika;  Tam, Kayan;  Ueberheide, Beatrix M.;  Unutmaz, Derya;  Torres, Victor J.;  Cadwell, Ken
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Tumours depend on nutrients supplied by the host for their growth and survival. Modifications to the host'  s diet can change nutrient availability in the tumour microenvironment, which might represent a promising strategy for inhibiting tumour growth. Dietary modifications can limit tumour-specific nutritional requirements, alter certain nutrients that target the metabolic vulnerabilities of the tumour, or enhance the cytotoxicity of anti-cancer drugs. Recent reports have suggested that modification of several nutrients in the diet can alter the efficacy of cancer therapies, and some of the newest developments in this quickly expanding field are reviewed here. The results discussed indicate that the dietary habits and nutritional state of a patient must be taken into account during cancer research and therapy.


  
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.


  
Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis 期刊论文
NATURE, 2020, 579 (7798) : 279-+
作者:  Liu, Xiaomeng;  Gao, Hongyan;  Ward, Joy E.;  Liu, Xiaorong;  Yin, Bing;  Fu, Tianda;  Chen, Jianhan;  Lovley, Derek R.;  Yao, Jun
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes(1-3), the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation-all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment-reversing hepatic steatosis and glucose intolerance-were abrogated in Insp3r1 (also known as Itpr1)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.


  
Vulnerability of the industrialized microbiota 期刊论文
SCIENCE, 2019, 366 (6464) : 444-+
作者:  Sonnenburg, Justin L.;  Sonnenburg, Erica D.
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
Sauropods get a new diet and a new look 期刊论文
SCIENCE, 2019, 366 (6463) : 291-291
作者:  Pickrell, John
收藏  |  浏览/下载:0/0  |  提交时间:2019/11/27
The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3 期刊论文
SCIENCE, 2019, 365 (6460) : 1428-+
作者:  Kuang, Zheng;  Wang, Yuhao;  Li, Yun;  Ye, Cunqi;  Ruhn, Kelly A.;  Behrendt, Cassie L.;  Olson, Eric N.;  Hooper, Lora V.
收藏  |  浏览/下载:20/0  |  提交时间:2019/11/27
Diet drives primate brain size 期刊论文
NATURE, 2017, 543 (7647) : 592-592
作者:  [unavailable]
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
Immune control of the microbiota prevents obesity 期刊论文
SCIENCE, 2019, 365 (6451) : 316-317
作者:  Wang, Yuhao;  Hooper, Lora V.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27