GSTDTAP

浏览/检索结果: 共106条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Worsening urban ozone pollution in China from 2013 to 2017-Part 1: The complex and varying roles of meteorology 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (11) : 6305-6321
作者:  Liu, Yiming;  Wang, Tao
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/09
Transparent ferroelectric crystals with ultrahigh piezoelectricity 期刊论文
NATURE, 2020, 577 (7790) : 350-+
作者:  Qiu, Chaorui;  Wang, Bo;  Zhang, Nan;  Zhang, Shujun;  Liu, Jinfeng;  Walker, David;  Wang, Yu;  Tian, Hao;  Shrout, Thomas R.;  Xu, Zhuo;  Chen, Long-Qing;  Li, Fei
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications(1-7). However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d(33) (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k(33) (about 94 per cent) and a large electro-optical coefficient gamma(33) (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d(33) value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity(8-10). This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.


  
Seawater analysis by ambient mass-spectrometry-based seaomics 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (10) : 6243-6257
作者:  Zabalegui, Nicolas;  Manzi, Malena;  Depoorter, Antoine;  Hayeck, Nathalie;  Roveretto, Marie;  Li, Chunlin;  van Pinxteren, Manuela;  Herrmann, Hartmut;  George, Christian;  Monge, Maria Eugenia
收藏  |  浏览/下载:5/0  |  提交时间:2020/06/01
Downward cloud venting of the central African biomass burning plume during the West Africa summer monsoon 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (9) : 5373-5390
作者:  Dajuma, Alima;  39;Datchoh, Evelyne Toure
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
Observation of Bose-Einstein condensates in an Earth-orbiting research lab 期刊论文
NATURE, 2020, 582 (7811) : 103-+
作者:  Yamamoto, Keisuke;  Venida, Anthony;  Yano, Julian;  Biancur, Douglas E.;  Kakiuchi, Miwako;  Gupta, Suprit;  Sohn, Albert S. W.;  Mukhopadhyay, Subhadip;  Lin, Elaine Y.;  Parker, Seth J.;  Banh, Robert S.;  Paulo, Joao A.;  Wen, Kwun Wah;  Debnath, Jayanta;  Kim, Grace E.;  Mancias, Joseph D.;  Fearon, Douglas T.;  Perera, Rushika M.;  Kimmelman, Alec C.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Quantum mechanics governs the microscopic world, where low mass and momentum reveal a natural wave-particle duality. Magnifying quantum behaviour to macroscopic scales is a major strength of the technique of cooling and trapping atomic gases, in which low momentum is engineered through extremely low temperatures. Advances in this field have achieved such precise control over atomic systems that gravity, often negligible when considering individual atoms, has emerged as a substantial obstacle. In particular, although weaker trapping fields would allow access to lower temperatures(1,2), gravity empties atom traps that are too weak. Additionally, inertial sensors based on cold atoms could reach better sensitivities if the free-fall time of the atoms after release from the trap could be made longer(3). Planetary orbit, specifically the condition of perpetual free-fall, offers to lift cold-atom studies beyond such terrestrial limitations. Here we report production of rubidium Bose-Einstein condensates (BECs) in an Earth-orbiting research laboratory, the Cold Atom Lab. We observe subnanokelvin BECs in weak trapping potentials with free-expansion times extending beyond one second, providing an initial demonstration of the advantages offered by a microgravity environment for cold-atom experiments and verifying the successful operation of this facility. With routine BEC production, continuing operations will support long-term investigations of trap topologies unique to microgravity(4,5), atom-laser sources(6), few-body physics(7,8)and pathfinding techniques for atom-wave interferometry(9-12).


  
Open cells exhibit weaker entrainment of free-tropospheric biomass burning aerosol into the south-east Atlantic boundary layer 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (7) : 4059-4084
作者:  Abel, Steven J.;  Barrett, Paul A.;  Zuidema, Paquita;  Zhang, Jianhao;  Christensen, Matt;  Peers, Fanny;  Taylor, Jonathan W.;  Crawford, Ian;  Bower, Keith N.;  Flynn, Michael
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Fundamental bounds on the fidelity of sensory cortical coding 期刊论文
NATURE, 2020
作者:  Rempel, S.;  Gati, C.;  Nijland, M.;  Thangaratnarajah, C.;  Karyolaimos, A.;  de Gier, J. W.;  Guskov, A.;  Slotboom, D. J.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

How the brain processes information accurately despite stochastic neural activity is a longstanding question(1). For instance, perception is fundamentally limited by the information that the brain can extract from the noisy dynamics of sensory neurons. Seminal experiments(2,3) suggest that correlated noise in sensory cortical neural ensembles is what limits their coding accuracy(4-6), although how correlated noise affects neural codes remains debated(7-11). Recent theoretical work proposes that how a neural ensemble'  s sensory tuning properties relate statistically to its correlated noise patterns is a greater determinant of coding accuracy than is absolute noise strength(12-14). However, without simultaneous recordings from thousands of cortical neurons with shared sensory inputs, it is unknown whether correlated noise limits coding fidelity. Here we present a 16-beam, two-photon microscope to monitor activity across the mouse primary visual cortex, along with analyses to quantify the information conveyed by large neural ensembles. We found that, in the visual cortex, correlated noise constrained signalling for ensembles with 800-1,300 neurons. Several noise components of the ensemble dynamics grew proportionally to the ensemble size and the encoded visual signals, revealing the predicted information-limiting correlations(12-14). Notably, visual signals were perpendicular to the largest noise mode, which therefore did not limit coding fidelity. The information-limiting noise modes were approximately ten times smaller and concordant with mouse visual acuity(15). Therefore, cortical design principles appear to enhance coding accuracy by restricting around 90% of noise fluctuations to modes that do not limit signalling fidelity, whereas much weaker correlated noise modes inherently bound sensory discrimination.


A microscopy system that enables simultaneous recording from hundreds of neurons in the mouse visual cortex reveals that the brain enhances its coding capacity by representing visual inputs in dimensions perpendicular to correlated noise.


  
Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (6) : 3333-3355
作者:  Novelli, Anna;  Vereecken, Luc;  Bohn, Birger;  Dorn, Hans-Peter;  Gkatzelis, Georgios I.;  Hofzumahaus, Andreas;  Holland, Frank;  Reimer, David;  Rohrer, Franz;  Rosanka, Simon;  Taraborrelli, Domenico;  Tillmann, Ralf;  Wegener, Robert;  Yu, Zhujun;  Kiendler-Scharr, Astrid;  Wahner, Andreas;  Fuchs, Hendrik
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Strongly correlated electrons and hybrid excitons in a moire heterostructure 期刊论文
NATURE, 2020, 580 (7804) : 472-+
作者:  Banerjee, Antara;  Fyfe, John C.;  Polvani, Lorenzo M.;  Waugh, Darryn;  Chang, Kai-Lan
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors(1-5). However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons(6,7) can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moire superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moire subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose-Fermi mixtures of degenerate electrons and dipolar excitons.


Optical spectroscopy is used to probe correlated electronic states in a moire heterostructure, showing many-body effects such as strong layer paramagnetism and an incompressible Mott-like state of electrons.


  
An unexpected catalyst dominates formation and radiative forcing of regional haze 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (8) : 3960-3966
作者:  Zhang, Fang;  Wang, Yuan;  Peng, Jianfei;  Chen, Lu;  Sun, Yele;  Duan, Lian;  Ge, Xinlei;  Li, Yixin;  Zhao, Jiayun;  Liu, Chao;  Zhang, Xiaochun;  Zhang, Gen;  Pan, Yuepeng;  Wang, Yuesi;  Zhang, Annie L.;  Ji, Yuemeng;  Wang, Gehui;  Hu, Min;  Molina, Mario J.;  Zhang, Renyi
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13
black carbon  air pollution  climate  multiphase chemistry  haze