GSTDTAP

浏览/检索结果: 共43条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
A map of object space in primate inferotemporal cortex 期刊论文
NATURE, 2020, 583 (7814) : 103-+
作者:  Wu, Huihui;  Li, Bosheng;  Iwakawa, Hiro-oki;  Pan, Yajie;  Tang, Xianli;  Ling-hu, Qianyan;  Liu, Yuelin;  Sheng, Shixin;  Feng, Li;  Zhang, Hong;  Zhang, Xinyan;  Tang, Zhonghua;  Xia, Xinli;  Zhai, Jixian;  Guo, Hongwei
收藏  |  浏览/下载:47/0  |  提交时间:2020/07/03

Primate inferotemporal cortex contains a coarse map of object space consisting of four networks, identified using functional imaging, electrophysiology and deep networks.


The inferotemporal (IT) cortex is responsible for object recognition, but it is unclear how the representation of visual objects is organized in this part of the brain. Areas that are selective for categories such as faces, bodies, and scenes have been found(1-5), but large parts of IT cortex lack any known specialization, raising the question of what general principle governs IT organization. Here we used functional MRI, microstimulation, electrophysiology, and deep networks to investigate the organization of macaque IT cortex. We built a low-dimensional object space to describe general objects using a feedforward deep neural network trained on object classification(6). Responses of IT cells to a large set of objects revealed that single IT cells project incoming objects onto specific axes of this space. Anatomically, cells were clustered into four networks according to the first two components of their preferred axes, forming a map of object space. This map was repeated across three hierarchical stages of increasing view invariance, and cells that comprised these maps collectively harboured sufficient coding capacity to approximately reconstruct objects. These results provide a unified picture of IT organization in which category-selective regions are part of a coarse map of object space whose dimensions can be extracted from a deep network.


  
The gut-brain axis mediates sugar preference 期刊论文
NATURE, 2020, 580 (7804) : 511-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste(1-3). Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Experiments in mice show that a population of neurons in the vagal ganglia respond to the presence of glucose in the gut and connect to neurons in the brainstem, revealing the circuit that underlies the neural basis for the behavioural preference for sugar.


  
Local and global consequences of reward-evoked striatal dopamine release 期刊论文
NATURE, 2020, 580 (7802) : 239-+
作者:  Wagner, Felix R.;  Dienemann, Christian;  Wang, Haibo;  Stuetzer, Alexandra;  Tegunov, Dimitry;  Urlaub, Henning;  Cramer, Patrick
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli(1). Neuroscientists have tried to define the functions of dopamine in concise conceptual terms(2), but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied(3), the effects of dopamine on larger-scale neural activity profiles are less well-understood. Here we combine dynamic dopamine-sensitive molecular imaging(4) and functional magnetic resonance imaging to determine how striatal dopamine release shapes local and global responses to rewarding stimulation in rat brains. We find that dopamine consistently alters the duration, but not the magnitude, of stimulus responses across much of the striatum, via quantifiable postsynaptic effects that vary across subregions. Striatal dopamine release also potentiates a network of distal responses, which we delineate using neurochemically dependent functional connectivity analyses. Hot spots of dopaminergic drive notably include cortical regions that are associated with both limbic and motor function. Our results reveal distinct neuromodulatory actions of striatal dopamine that extend well beyond its sites of peak release, and that result in enhanced activation of remote neural populations necessary for the performance of motivated actions. Our findings also suggest brain-wide biomarkers of dopaminergic function and could provide a basis for the improved interpretation of neuroimaging results that are relevant to learning and addiction.


Molecular and functional magnetic resonance imaging in the rat reveals distinct neuromodulatory effects of striatal dopamine that extend beyond peak release sites and activate remote neural populations necessary for performing motivated actions.


  
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Recurrent interactions in local cortical circuits 期刊论文
NATURE, 2020, 579 (7798) : 256-+
作者:  Liu, Yang;  Nguyen, Phong T.;  Wang, Xun;  Zhao, Yuting;  Meacham, Corbin E.;  Zou, Zhongju;  Bordieanu, Bogdan;  Johanns, Manuel;  Vertommen, Didier;  Wijshake, Tobias;  May, Herman;  Xiao, Guanghua;  Shoji-Kawata, Sanae;  Rider, Mark H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations(1-4). Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average(5,6). Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes(5-7), and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually(8). Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity(7) and photoablating(9,10) neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10-20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.


Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour.


  
Caveolae in CNS arterioles mediate neurovascular coupling 期刊论文
NATURE, 2020
作者:  Huang, Weijiao;  Masureel, Matthieu;  Qu, Qianhui;  Janetzko, John;  Inoue, Asuka;  Kato, Hideaki E.;  Robertson, Michael J.;  Nguyen, Khanh C.;  Glenn, Jeffrey S.;  Skiniotis, Georgios;  Kobilka, Brian K.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Caveolae in arteriolar endothelial cells-but not those in neighbouring smooth muscle cells-have a key role in neurovascular coupling, an essential function for meeting acute brain energy demand.


Proper brain function depends on neurovascular coupling: neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain energy demand(1). Neurovascular coupling is the basis for functional brain imaging(2), and impaired neurovascular coupling is implicated in neurodegeneration(1). The underlying molecular and cellular mechanisms of neurovascular coupling remain poorly understood. The conventional view is that neurons or astrocytes release vasodilatory factors that act directly on smooth muscle cells (SMCs) to induce arterial dilation and increase local blood flow(1). Here, using two-photon microscopy to image neural activity and vascular dynamics simultaneously in the barrel cortex of awake mice under whisker stimulation, we found that arteriolar endothelial cells (aECs) have an active role in mediating neurovascular coupling. We found that aECs, unlike other vascular segments of endothelial cells in the central nervous system, have abundant caveolae. Acute genetic perturbations that eliminated caveolae in aECs, but not in neighbouring SMCs, impaired neurovascular coupling. Notably, caveolae function in aECs is independent of the endothelial NO synthase (eNOS)-mediated NO pathway. Ablation of both caveolae and eNOS completely abolished neurovascular coupling, whereas the single mutants exhibited partial impairment, revealing that the caveolae-mediated pathway in aECs is a major contributor to neurovascular coupling. Our findings indicate that vasodilation is largely mediated by endothelial cells that actively relay signals from the central nervous system to SMCs via a caveolae-dependent pathway.


  
Population imaging of neural activity in awake behaving mice 期刊论文
NATURE, 2019, 574 (7778) : 413-+
作者:  Piatkevich, Kiryl D.;  Bensussen, Seth;  Tseng, Hua-an;  Shroff, Sanaya N.;  Lopez-Huerta, Violeta Gisselle;  Park, Demian;  Jung, Erica E.;  Shemesh, Or A.;  Straub, Christoph;  Gritton, Howard J.;  Romano, Michael F.;  Costa, Emma;  Sabatini, Bernardo L.;  Fu, Zhanyan;  Boyden, Edward S.;  Han, Xue
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
Fast objective coupled planar illumination microscopy 期刊论文
NATURE COMMUNICATIONS, 2019, 10
作者:  Greer, Cody J.;  Holy, Timothy E.
收藏  |  浏览/下载:0/0  |  提交时间:2019/11/27
Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library 期刊论文
ENVIRONMENTAL HEALTH PERSPECTIVES, 2019, 127 (9)
作者:  Paul-Friedman, Katie;  Martin, Matt;  Crofton, Kevin M.;  Hsu, Chia-Wen;  Sakamuru, Srilatha;  Zhao, Jinghua;  Xia, Menghang;  Huang, Ruili;  Stavreva, Diana A.;  Soni, Vikas;  Varticovski, Lyuba;  Raziuddin, Razi;  Hager, Gordon L.;  Houck, Keith A.
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding 期刊论文
SCIENCE, 2019, 364 (6447) : 1271-+
作者:  Rossi, Mark A.;  Basiri, Marcus L.;  McHenry, Jenna A.;  Kosyk, Oksana;  Otis, James M.;  van den Munkhof, Hanna E.;  Bryois, Julien;  Hubel, Christopher;  Breen, Gerome;  Guo, Wilson;  Bulik, Cynthia M.;  Sullivan, Patrick F.;  Stuber, Garret D.
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27