GSTDTAP

浏览/检索结果: 共48条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:21/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.


  
Global Heat Uptake by Inland Waters 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Vanderkelen, I;  van Lipzig, N. P. M.;  Lawrence, D. M.;  Droppers, B.;  Golub, M.;  Gosling, S. N.;  Janssen, A. B. G.;  Marce, R.;  Schmied, H. Mueller;  Perroud, M.;  Pierson, D.;  Pokhrel, Y.;  Satoh, Y.;  Schewe, J.;  Seneviratne, S., I;  Stepanenko, V. M.;  Tan, Z.;  Woolway, R., I;  Thiery, W.
收藏  |  浏览/下载:13/0  |  提交时间:2020/06/09
heat uptake  inland waters  lakes  rivers  reservoirs  
Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau 期刊论文
NATURE GEOSCIENCE, 2020, 13 (5)
作者:  Zhang, Liwei;  Xia, Xinghui;  Liu, Shaoda;  Zhang, Sibo;  Li, Siling;  Wang, Junfeng;  Wang, Gongqin;  Gao, Hui;  Zhang, Zhenrui;  Wang, Qingrui;  Wen, Wu;  Liu, Ran;  Yang, Zhifeng;  Stanley, Emily H.;  Raymond, Peter A.
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
Global CO2 emissions from dry inland waters share common drivers across ecosystems 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Keller, P. S.;  Catalan, N.;  von Schiller, D.;  Grossart, H-P;  Koschorreck, M.;  Obrador, B.;  Frassl, M. A.;  Karakaya, N.;  Barros, N.;  Howitt, J. A.;  Mendoza-Lera, C.;  Pastor, A.;  Flaim, G.;  Aben, R.;  Riis, T.;  Arce, M., I;  Onandia, G.;  Paranaiba, J. R.;  Linkhorst, A.;  del Campo, R.;  Amado, A. M.;  Cauvy-Fraunie, S.;  Brothers, S.;  Condon, J.;  Mendonca, R. F.;  Reverey, F.;  Room, E-, I;  Datry, T.;  Roland, F.;  Laas, A.;  Obertegger, U.;  Park, J-H;  Wang, H.;  Kosten, S.;  Gomez, R.;  Feijoo, C.;  Elosegi, A.;  Sanchez-Montoya, M. M.;  Finlayson, C. M.;  Melita, M.;  Oliveira Junior, E. S.;  Muniz, C. C.;  Gomez-Gener, L.;  Leigh, C.;  Zhang, Q.;  Marce, R.
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
East Siberian Arctic inland waters emit mostly contemporary carbon 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Dean, Joshua F.;  Meisel, Ove H.;  Rosco, Melanie Martyn;  Marchesini, Luca Belelli;  Garnett, Mark H.;  Lenderink, Henk;  van Logtestijn, Richard;  Borges, Alberto, V;  Bouillon, Steven;  Lambert, Thibault;  Rockmann, Thomas;  Maximov, Trofim;  Petrov, Roman;  Karsanaev, Sergei;  Aerts, Rien;  van Huissteden, Jacobus;  Vonk, Jorien E.;  Dolman, A. Johannes
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
Defining a Riverine Tidal Freshwater Zone and Its Spatiotemporal Dynamics 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (4)
作者:  Jones, Allan E.;  Hardison, Amber K.;  Hodges, Ben R.;  McClelland, James W.;  Moffett, Kevan B.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
freshwater  tide  river  precipitation  estuary  energy transport  
Connections Between Daily Surface Temperature Contrast and CO2 Flux Over a Tibetan Lake: A Case Study of Ngoring Lake 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (6)
作者:  Han, Bo;  Meng, Xianhong;  Yang, Qinghua;  Wu, Renhao;  Lv, Shihua;  Li, Zhaoguo;  Wang, Xin;  Li, Yubin;  Yu, Lejiang
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/02
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Chloride Balance in Freshwater System of a Highly Anthropized Subalpine Area: Load and Source Quantification Through a Watershed Approach 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (1)
作者:  Nava, V.;  Patelli, M.;  Bonomi, T.;  Stefania, G. A.;  Zanotti, C.;  Fumagalli, L.;  Soler, V.;  Rotiroti, M.;  Leoni, B.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams 期刊论文
GLOBAL CHANGE BIOLOGY, 2019
作者:  Rocher-Ros, Gerard;  Sponseller, Ryan A.;  Bergstrom, Ann-Kristin;  Myrstener, Maria;  Giesler, Reiner
收藏  |  浏览/下载:6/0  |  提交时间:2020/02/17
Arctic  carbon cycle  carbon processing  CO2 evasion  stream metabolism