GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

限定条件                                    
已选(0)清除 条数/页:   排序方式:
Femtosecond-to-millisecond structural changes in a light-driven sodium pump 期刊论文
NATURE, 2020, 583 (7815) : 314-+
作者:  Moore, Luiza;  Leongamornlert, Daniel;  Coorens, Tim H. H.;  Sanders, Mathijs A.;  Ellis, Peter;  Dentro, Stefan C.;  Dawson, Kevin J.;  Butler, Tim;  Rahbari, Raheleh;  Mitchell, Thomas J.;  Maura, Francesco;  Nangalia, Jyoti;  Tarpey, Patrick S.;  Brunner, Simon F.;  Lee-Six, Henry;  Hooks, Yvette;  Moody, Sarah;  Mahbubani, Krishnaa T.;  Jimenez-Linan, Mercedes;  Brosens, Jan J.;  Iacobuzio-Donahue, Christine A.;  Martincorena, Inigo;  Saeb-Parsy, Kourosh;  Campbell, Peter J.;  Stratton, Michael R.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Light-driven sodium pumps actively transport small cations across cellular membranes(1). These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved(2,3), it is unclear how structural alterations overtime allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser(4), we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion bind stransiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


  
Ice front blocking of ocean heat transport to an Antarctic ice shelf 期刊论文
NATURE, 2020, 578 (7796) : 568-+
作者:  Alexandrov, Ludmil B.;  Kim, Jaegil;  Haradhvala, Nicholas J.;  Huang, Mi Ni;  Ng, Alvin Wei Tian;  Wu, Yang;  Boot, Arnoud;  Covington, Kyle R.;  Gordenin, Dmitry A.;  Bergstrom, Erik N.;  Islam, S. M. Ashiqul;  Lopez-Bigas, Nuria;  Klimczak, Leszek J.;  McPherson, John R.;  Morganella, Sandro;  Sabarinathan, Radhakrishnan;  Wheeler, David A.;  Mustonen, Ville;  Getz, Gad;  Rozen, Steven G.;  Stratton, Michael R.
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13

The front of the Getz Ice Shelf in West Antarctica creates an abrupt topographic step that deflects ocean currents, suppressing 70% of the heat delivery to the ice sheet.


Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate(1,2). Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change(2,3), motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice(4-6). However, the shoreward heat flux typically far exceeds that required to match observed melt rates(2,7,8), suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice-bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf(9). Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.