GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Laser spectroscopy of pionic helium atoms 期刊论文
NATURE, 2020, 581 (7806) : 37-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Charged pions(1) are the lightest and longest-lived mesons. Mesonic atoms are formed when an orbital electron in an atom is replaced by a negatively charged meson. Laser spectroscopy of these atoms should permit the mass and other properties of the meson to be determined with high precision and could place upper limits on exotic forces involving mesons (as has been done in other experiments on antiprotons(2-9)). Determining the mass of the pi(-) meson in particular could help to place direct experimental constraints on the mass of the muon antineutrino(10-13). However, laser excitations of mesonic atoms have not been previously achieved because of the small number of atoms that can be synthesized and their typically short (less than one picosecond) lifetimes against absorption of the mesons into the nuclei(1). Metastable pionic helium (pi He-4(+)) is a hypothetical(14-16) three-body atom composed of a helium-4 nucleus, an electron and a pi(-) occupying a Rydberg state of large principal (n approximate to 16) and orbital angular momentum (l approximate to n - 1) quantum numbers. The pi He-4(+) atom is predicted to have an anomalously long nanosecond-scale lifetime, which could allow laser spectroscopy to be carried out(17). Its atomic structure is unique owing to the absence of hyperfine interactions(18,19) between the spin-0 pi(-) and the He-4 nucleus. Here we synthesize pi He-4(+) in a superfluid-helium target and excite the transition (n, l) = (17, 16) -> (17, 15) of the pi(-)-occupied pi He-4(+) orbital at a near-infrared resonance frequency of 183,760 gigahertz. The laser initiates electromagnetic cascade processes that end with the nucleus absorbing the pi(-) and undergoing fission(20,21). The detection of emerging neutron, proton and deuteron fragments signals the laser-induced resonance in the atom, thereby confirming the presence of pi He-4(+). This work enables the use of the experimental techniques of quantum optics to study a meson.


Long-lived pionic helium atoms (composed of a helium-4 nucleus, an electron and a negatively charged pion) are synthesized in a superfluid-helium target, as confirmed by laser spectroscopy involving the pion-occupied orbitals.


  
Redox-switchable carboranes for uranium capture and release 期刊论文
NATURE, 2020, 577 (7792) : 652-+
作者:  Marques, Joao C.;  Li, Meng;  Schaak, Diane;  Robson, Drew N.;  Li, Jennifer M.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

The uranyl ion (UO22+  U(vi) oxidation state) is the most common form of uranium found in terrestrial and aquatic environments and is a central component in nuclear fuel processing and waste remediation efforts. Uranyl capture from either seawater or nuclear waste has been well studied and typically relies on extremely strong chelating/binding affinities to UO22+ using chelating polymers(1,2), porous inorganic(3-5) or carbon-based(6,7) materials, as well as homogeneous(8) compounds. By contrast, the controlled release of uranyl after capture is less established and can be difficult, expensive or destructive to the initial material(2,9). Here we show how harnessing the redox-switchable chelating and donating properties of an ortho-substituted closo-carborane (1,2-(Ph2PO)(2)-1,2-C2B10H10) cluster molecule can lead to the controlled chemical or electrochemical capture and release of UO22+ in monophasic (organic) or biphasic (organic/aqueous) model solvent systems. This is achieved by taking advantage of the increase in the ligand bite angle when the closo-carborane is reduced to the nido-carborane, resulting in C-C bond rupture and cage opening. The use of electrochemical methods for uranyl capture and release may complement existing sorbent and processing systems.


Redox-switchable chelation is demonstrated for a carborane cluster molecule, leading to controlled chemical or electrochemical capture and release of uranyl in monophasic or biphasic model solvent systems.